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Mechanical metamaterials designed around a zero-energy pathway of deformation known as a
mechanism, challenge the conventional picture of elasticity and generate complex spatial response that
remains largely uncharted. Here, we present a unified theoretical framework to showing that the presence of
a unimode in a 2D structure generates a space of anomalous zero-energy sheared analytic modes. The
spatial profiles of these stress-free strain patterns is dual to equilibrium stress configurations. We show a
transition at an exceptional point between bulk modes in structures with conventional Poisson ratios
(anauxetic) and evanescent surface modes for negative Poisson ratios (auxetic). We suggest a first
application of these unusual response properties as a switchable signal amplifier and filter for use in
mechanical circuitry and computation.
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Classical elasticity is a field theory describing a struc-
ture’s deformation from a single zero-energy shape. In
contrast, a growing number of strategies and methods to
program special energy-free pathways of deformation
directly into designer materials [1–6] generate structures
with continuous manifolds of (nearly) zero-energy shapes.
Such pathways, known as mechanisms, fundamentally
challenge the classical picture of elasticity by setting
common elastic constants to anomalous zero or negative
values [1,2,7–16]. Even further beyond conventional elas-
ticity, structures have been developed with “odd” elastic
constants [17], multistability [18], geometric frustration
[19,20], and hierarchical elasticity [21–23], and yet the
generic consequences of a single mechanism on elastic
response have still remained largely unexplored.
A recent series of investigations has revealed that a purely

dilational mechanism fundamentally changes the response
of a continuum material by introducing an associated space
of conformal soft modes [24–27]. In the continuum limit of a
perfect mechanism, thesemodes cost zero energy, and it was
suggested that such a nontrivial softmode spacewould come
paired with any generic mechanism even outside the dila-
tional limit [14,25–28], and some indicative nonlinear
examples of this phenomenon have since been identified
[26,27]. Further, the introduction of such a class of stress-
free deformations into the force-balanced deformations has
unknown implications for the profiles of stress that are
supported. Therefore, the question presses: how is the
overall space of supported deformations necessarily
changed by mechanism design?
Here, rather than focus on a particular microstructure or

type of mechanism, we explore how the presence of an
arbitrary mechanism necessarily determines a two-dimen-
sional structure’s non-uniform equilibrium response, in
much the same way that conventional translational and

rotational symmetries necessarily give rise to elastic waves
as Goldstone bosons [29]. We find that the impact of an
arbitrary mechanism is to generate spatial patterns of stress-
free strains that are dual to the system’s permitted stresses.
Both are analytic in a particular set of sheared coordinates,
which we introduce here, and we show that the spatial
character of these deformation patterns is controlled by an
exceptional point in the Poisson’s ratio ν at ν ¼ 0.
Elasticity theory for generic planar mechanism meta-

materials.—Consider an elastic solid undergoing a defor-
mation such that matter initially located at material
coordinates R ¼ ðx; yÞ is displaced by uðRÞ. Because
the system is translationally invariant, the energy depends
on displacement gradients, rather than the bare displace-
ments. In addition, because it is rotationally invariant, the
energy depends only on the symmetrization of these
gradients, the small strains εij ≡ ð∂iuj þ ∂juiÞ=2 [29,30].
The local energy then takes the general and well-known
form Cijklεijεkl=2, in terms of the three strain compo-
nents εxx; εxy; εyy.
In contrast, consider an elastic structure containing a

mechanism. In a coarse description, such a system is
defined to contain a particular strain pathway that, as
was the case with rotations, does not contribute to the
elastic energy density. As shown in Supplemental Material
[31], Sec. I. B, it is still always possible to construct
orthonormal components of strain that separate this mecha-
nism strain εm from the nonmechanism strains ε1, ε2, as
shown in Fig. 1(c). Such variables inherently span all
possible energy costly strains and we may write the elastic
energy in general form as

E ¼ 1

2
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in terms of these variables. The stiffnesses Gij also define
the constitutive relationship between the strains and the
corresponding stresses, which is written compactly,2
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using the Voigt convention of treating stress and strain
tensors as vectors of orthonormal components. Energy
conservation requires the symmetry of this matrix, so that
the presence of the mechanism eliminates three of the six
independent stiffnesses. Thus, the defining property that the
mechanism strain alone cannot generate stress also implies
that mechanism stress with the same tensorial form cannot
be supported σm ¼ 0.
In the principal axis coordinates we choose, the mecha-

nism strain tensor is diagonal and characterized solely by
the mechanism Poisson’s ratio ν, which is the negative ratio
of strains along the axes. We note that a quarter-turn of the
coordinate system inverts the Poisson ratio. Despite this
ambiguity, the mechanism strain can only switch from
auxetic (ν < 0) to anauxetic (ν > 0) by passing through the
uniaxial strains where the Poisson’s ratio either vanishes or
diverges.
We investigate this general mechanism-based elasticity

theory using the example structures displayed in Figs. 1(a)
and 1(b), which are composed of rigid parallelograms
connected at their corners by ideal frictionless hinges.
Simultaneously rotating each block in opposite fashion to
its neighbors does not cost any energy and this rotational
motion therefore constitutes a mechanism. In addition to
generating finely detailed rearrangements within each unit
cell, this mechanism motion generates changes to the lattice
vectors connecting each unit cell to its neighbors [Figs. 1(a)
and 1(b), pink arrows]. The mechanism elasticity theory
above then applies to a coarse description of the material
deformation in terms of these lattice vectors. As shown in
Fig. 1(d), varying the parallelogram angle ψ and mecha-
nism rotation θ spans the possible values of the Poisson’s
ratio ν and, paired with a rotation of the coordinate system,
any desired linear mechanism strain may be probed.
Sheared analytic modes.—For the special case of pure-

dilational mechanisms, zero-energy deformations are those
that disallow shear and hence preserve angles in the
material. As is well-known, maps with this property are
complex-analytic. That is, when points in the real plane are
mapped to the complex plane, ðz; z�Þ≡ ðxþ iy; x − iyÞ
with the equivalent map for displacements ðu; u�Þ≡ ðux þ
iuy; ux − iuyÞ (see, e.g., [33]), the zero-energy (i.e., stress-
free) deformations are precisely those that satisfy complex
analyticity, ∂z�u ¼ ∂zu� ¼ 0, which has yielded tremen-
dous insight into dilational metamaterials [24–26].

Thus motivated, we seek to extend this analyticity to
generic mechanisms outside of the pure-dilational limit.
This can be achieved by introducing the transformed
variables:
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FIG. 1. A characteristic class of planar mechanisms. (a) The
parallelogram-based mechanism designs we investigate are gen-
erated by setting a design angle ψ , and includes the canonical
“Rotating Squares” pattern at the point ψ ¼ 0. (b) The mecha-
nism itself is traversed via rotating each rigid parallelogram (dark
gray) opposite to its neighbors (light gray), which alters the
macroscopic strain as reflected in the lattice vectors (pink
arrows). Light and dark gray block coloration is purely for ease
of viewing. (c) An appropriately chosen orthonormal basis may
be used to decompose any arbitrary strain into mechanism and
nonmechanism components as shown. (d) The strains generated
by varying the counter-rotation θ for a variety of different ψ
(different lines) capture an arbitrary variety of Poisson’s ratios.
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where γ ≡ ν−1=2 is real for anauxetic mechanisms and
imaginary for auxetic ones.
The utility of this transformation is seen in the identi-

fication of zero-energy deformations. As shown in
Supplemental Material [31], Sec. II. A, it transforms the
requirement that the two nonmechanism strains vanish into
the requirement that two of the derivatives vanish:

∂w̄u ¼ 0 → u ¼ f1ðwÞ ð5Þ

∂wū ¼ 0 → ū ¼ f2ðw̄Þ: ð6Þ

Hence, for a continuum stress-free deformation, the trans-
formed displacement fields are each analytic functions of
just one of the transformed coordinates, consistent with
Ref. [14].
In simply connected domains, these functions may then

be generated by simple series expansions, e.g., f1ðwÞ ¼P∞
n¼0 Cnwn. The requirement that ux, uy be real-valued

enforces nontrivial restrictions on the functions f1, f2. On
the auxetic side, where coordinates w; w̄ are complex-
valued, we require that f1ðwÞ; f2ðw̄Þ be complex conju-
gates of one another. For the anauxetic side, w; w̄ are
real-valued and we simply require that f1, f2 be real-valued
functions. As this recipe for generating energy-free con-
tinuum unimode deformations relies on sheared analytic
functions of a sheared coordinate system, we refer to them

as “sheared analytic modes.” The exact mathematics of the
conformal soft maps from [25] is easily recovered in the
limit ν → −1.
In addition to such stress-free displacements, there are

patterns of stress that satisfy the bulk equilibrium condition
∂iσij ¼ 0 [30]. Upon making a transformation similar to
Eq. (4)
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these conditions for force balance may be captured simply
with

∂w̄σ ¼ 0 → σ ¼ g01ðwÞ ð8Þ

∂wσ̄ ¼ 0 → σ̄ ¼ g02ðw̄Þ: ð9Þ

It is clear that this is again the same set of equations that
were governing the stress-free displacement patterns.
Beyond the immediate analytic insight this generates,
Eqs. (8) and (9) indicates that the responses to “stress-
free” (i.e., not requiring force) versus “stress-bearing”
loading are mathematically dual spaces; any solution to
one problem can readily be transformed into a solution to a
dual problem in the other using a duality transformation T.
Definitionally [34], this transformation, which here maps a
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FIG. 2. Unimode mechanics in lattice metamaterials. (a)–(d) Minimal loading that is compatible with soft (stress-free) motions yields
mechanism dominated soft strain patterns. (a) The systems deform due to a set of additional springs at the system left boundary that
extend according to a smoothly varying function through space. (b) The mechanism strain εm exhibits significant variation through
space. (c),(d) The fraction of strain orthogonal to the mechanism strain (the nonmechanism strain fraction) decreases, and the fitting to
the global analytic form for soft strains improves as the lattice structure becomes finer. (e)–(h) More strict loading that is not compatible
with a soft motion may still be deciphered using sheared analytic functions. (e) Data for “stress-bearing” loading is generated via
numerical relaxation of the interior subject to displacement constraint of the boundary nodes, as detailed in Supplemental Material [31],
Sec. III. B. (f) The resultant nonmechanism stress (Supplemental Material [31], Sec. III. C) is finite and varies through space. (g),(h) This
nonmechanism stress dominates increasingly (i.e., the mechanism stress fraction decreases), and the fitting to a sheared analytic mode
(captured in the fractional fitting error) improves as the continuum limit is approached just as with the soft strains.
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pattern of (dimensionless) soft displacement s1 ¼ fu; ūg to
a force-balanced stress s2 ¼ ðσ; σ̄Þ ¼ Tðs1Þ, must consti-
tute an involution, so that s1 ¼ Tðs2Þ. For the case here, this
transformation is captured simply by the identity trans-
formation, explored in greater depth using stress and strain
fields in Supplemental Material [31], Sec. II. C.
To confirm these suggestive results, we examine nu-

merically force-balanced states of our unimode material
in both stress-free (Figs. 2(a)–2(d)) and stress-bearing
(Figs. 2(e)–2(h)) load situations as the unit cell structure
becomes finer. In both cases, following the analyses
described in the S.I., our analytic framework captures
the vast majority (> 95%) of observed deformation and
stress, and the quality of fit ubiquitously improves as the
system size is increased. In other words, sheared analytic
modes take hold and control response as the continuum
limit of these materials is approached.
Spatial character of generic unimode response.—As a

mechanism is tuned from the auxetic to the anauxetic, the
sheared coordinate systems w and w̄ briefly converge,
becoming equal at ν ¼ 0 and then real for ν > 0. This
defines an exceptional point separating auxetic and ana-
uxetic metamaterial mechanisms. Rather than controlling
the more common energetic spectra [35] or phase tran-
sitions [36] for nonconservative systems, this is an excep-
tional point in a spatial coordinate transform, and thus

distinguishes between spatial patterning types. On the
auxetic side, the components of the displacement for a
sheared analytic mode obey elliptic partial differential
equations (see e.g., [37]) and are harmonic conjugate
functions of the sheared coordinates. On the anauxetic
side, these components remain conjugate, but as real-
valued functions outside of the complex analytic setting;
these components obey partial differential equations of
hyperbolic character.
To illustrate these response patterns, we consider the

infinite half-plane, of arbitrary orientation, and with the
component of displacement along the boundary fixed to an
oscillatory function. As shown in Figs. 3(a) and 3(b), the
auxetic response decays into the bulk while simultaneously
oscillating in a direction determined by both ν and
orientation of the mechanism principal axes. As ν → 0
approaches the exceptional point from the negative side, the
length scale of spatial decay diverges, eventually leading to
persistent bulk oscillatory response in the anauxetic case.
This behavior may be exploited in a long strip geometry.

Here, an arbitrary displacement input on one boundary may
be decomposed into contributions of two polarization
types, which rotate in opposite directions along the boun-
dary. As derived in Supplemental Material, Sec. II. D and
shown in Fig. 4, left-polarized components decay expo-
nentially into the bulk of the auxetic metamaterial, while

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Spatial distribution of static unimode response near an open boundary. (a)–(d) Stress-free continuum deformations of the
unimode metamaterial in the semi-infinite plane, with arbitrarily oriented mechanism principal strain axes (large black arrows) will
change character as an exceptional point is crossed at Poisson’s ratio ν ¼ 0. For the auxetic systems in (a) and (b), an oscillatory set of
displacements (black lines) along the open boundary (bottom edge) will decay into the bulk along the perpendicular, while oscillating in
a special direction (blue arrow) set by the specific boundary orientation and by ν. (c),(d) On the other side of the exceptional point, the
soft displacements of the anauxetic mechanism will oscillate into the bulk without decay, and as discussed in Supplemental Material,
Sec. II. C [31] the boundary conditions on the transverse components may change with the addition of more modes when the
longitudinal component is fixed. (e)–(h) The same unimode metamaterial, subjected to stressed boundary conditions, will display
identical spatial patterns in the stress distribution due to the duality.
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the right-polarized components will be amplified. As such,
the unimode material acts not only as a mechanical
amplifier but also as a filter that polarizes generic inputs,
an initially generic static response. Note that, because of the
duality, similar amplification and filtering will persist for
stressed boundary conditions. Furthermore, as the structure
traverses the mechanism motion, undergoing uniform large
deformations, the Poisson’s ratio itself changes sign, as
shown in Fig. 1(d). This filtering property may therefore be
switched on and off, with large applied strains acting as a
“gating voltage” for mechanical signal processing in
analogy with transistors.
Discussion.—We have shown that the presence of a

single mechanism (unimode) in two-dimensional elasticity,
as can be achieved in mechanical metamaterials, ubiqui-
tously separates static response into dual spaces of stress-
bearing and stress-free deformation that span all possible
response patterns. Aside from an early indication of the role
of analyticity [14], previous investigations have not
addressed the stress-bearing response and have yielded
partial, yet useful, insight into stress-free deformations by
focusing only on unique (i.e., conformal) limits [24,25] and
particular structural compositions [26,27]. In contrast, our
investigation yields complete closed-form analytic results
determined solely by the orientation and Poisson’s ratio of
the mechanism principal strain, thereby unifying response
across structural designs and loading conditions. These
results therefore apply to unimode structures composed of
more varied combinations of polygons [5,24], realizing
designer deformation pathways [38], achieving arbitrary
range of deformation [39], and even those achieved via

guided pruning algorithms on random networks [40]. The
tunable Poisson’s ratio ν, and particularly the exceptional
point at ν ¼ 0, open the door to switchable elastic behavior,
which we introduce, and which may become useful in
metamaterial devices to amplify and filter signals in
mechanical computing and circuitry [41].
The duality between the spatial patterns of stresses and

strains joins an impressive contingent of dualities in
mechanics, such as those of Maxwell and Cremona
[42,43] between force balance and position compatibility,
of the phonon dispersions of special dilational metamate-
rials [15], and that between elasticity and tensor gauge
theories [44]. The duality presented herein appears to hinge
on a type of mechanical criticality present in two-dimen-
sional unimode metamaterials. Mechanism strain and
rotation constitute two fields whose spatial variation must
satisfy compatibility conditions, captured by a pair of first-
order partial differential equations (Supplemental Material,
Sec. I, and Refs. [25,26,28]). It is this balance of fields and
partial differential equations that is crucial to our Letter and
the two permitted stress fields likewise are constrained by
two first-order partial differential equations that guarantee a
force balance. It is an open question, then, how such
general principles extend to three-dimensional flexible
mechanical metamaterials, either bulk ones or curved
two-dimensional surfaces [2,45–50].

We acknowledge helpful conversations with Corentin
Coulais and Martin van Hecke.
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