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We show that the presence of anyons in the excitation spectrum of a two-dimensional system can be
inferred from nonlinear spectroscopic quantities. In particular, we consider pump-probe spectroscopy,
where a sample is irradiated by two light pulses with an adjustable time delay between them. The relevant
response coefficient exhibits a universal form that originates from the statistical phase acquired when
anyons created by the first pulse braid around those created by the second. This behavior is shown to be
qualitatively unchanged by nonuniversal physics including nonstatistical interactions and small nonzero
temperatures. In magnetic systems, the signal of interest can be measured using currently available
terahertz-domain probes, highlighting the potential usefulness of nonlinear spectroscopic techniques in the
search for quantum spin liquids.
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Two-dimensional quantum systems can host emergent
excitations that are “anyonic,” falling outside the usual
classification of bosonic vs fermionic statistics [1,2]. Their
theoretical discovery has triggered a search for physical
systems that can support such excitations, motivated jointly
by their potential relevance in understanding highly
correlated quantum materials such as the cuprate high-
temperature superconductors [3], and the possibility of
using such systems to perform fault-tolerant quantum
computation [4]. In solid-state settings, the primary foci
of these investigations are semiconductor heterostructures
in the fractional quantum Hall regime [5,6] and quantum
spin liquids (QSLs) in frustrated magnetic systems [7,8].
Vital to this search is the identification of experimental

signatures of anyons and of the topologically ordered
phases of matter that underpin them. One approach is to
look for excitations that carry quantum numbers smaller
than those of the underlying microscopic degrees of free-
dom (e.g., charges smaller than e), which have to be created
in groups of more than one at a time. This “fractionaliza-
tion” of excitations, which is often concomitant with
anyonic statistics, has been established in semiconductor
heterostructures using shot noise measurements [9,10];
similarly, a broad continuum in the dynamical spin
structure factor, as measured through inelastic neutron

scattering, serves as evidence favoring fractionalization
in certain candidate QSLs [11,12].
However, the direct detection of fractional statistics, as

opposed to just fractionalization, necessitates a setup where
braiding of excitations actually occurs, with the statistical
phases being detected by interferometric means [13–18].
This has been achieved in quantum Hall systems only
recently [19,20], using novel geometries to guide anyons
along edge modes. Such an approach to braiding is not
feasible in QSLs due to limitations in the sample geom-
etries that can be fabricated, and so appropriate bulk
signatures must be found instead. Scattering of neutrons
and of light (either electron spin resonance or Raman
scattering) are the most commonly employed methods to
probe the dynamics of electron spins (or pseudospins).
However, since most theoretical studies have focused on
linear response quantities [21–29]—primarily the dynami-
cal spin structure factor, which only witnesses fractionali-
zation—it is not yet clear how nontrivial braiding of anyons
can be inferred from such techniques.
In this work, we unveil how the braiding statistics of

excitations in QSLs manifest themselves in nonlinear
spectroscopic quantities. In particular, we study pump-
probe spectroscopy, where the system is perturbed by a
sequence of two pulses with a tunable time delay between
them. In a QSL, where excitations are deconfined, anyons
created by the first pulse can move and braid with those
created by the second (Fig. 1). We show that the statistical
phase induced by this process leads to a universal relation-
ship between the linear response coefficient χð1Þðt2Þ and the
pump-probe signal χð3ÞPP ðt1; t2Þ (a nonlinear response func-
tion which we define later in the Letter):
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χð3ÞPP ðt1; t2Þ ¼ χð1Þðt2Þ × cPP
�
t3=22 þ oðt3=22 Þ�; ð1Þ

where cPP is a nonuniversal constant. Equation (1) serves as
a fingerprint of anyonic excitations. The relevant signals can
be directly measured using currently available terahertz-
domain spectroscopic techniques, which have previously
been used to probe ultrafast magnetization dynamics in sys-
tems with spontaneous spin ordering [30–33]. Remarkably,
even though such probes only couple to zero-momentum
operators, i.e., no spatial resolution is available, the physics
of braiding statistics can still be seen.
Despite the strongly interacting nature of the systems

under consideration, our key result—the universal relation-
ship (1)—can be understood intuitively using a semiclassi-
cal argument, akin to those given for one-dimensional
systems in Refs. [34,35]. In short, we relate the behavior of
the pump-probe signal to the probability that anyons braid,
which itself grows asymptotically as t3=22 , where t2 is the
time between creation and annihilation of the probe anyons;
this leads to Eq. (1).
In this short Letter, we introduce the relevant quantities

and systems to be studied, and present the intuitive
arguments outlined above. These are backed up by more
rigorous, concrete calculations in a companion paper [36],
wherein we also discuss the implications of our results on
the nature of thermal relaxation in topologically ordered
systems. The findings reported here are shown to be
qualitatively unchanged when additional factors are
accounted for, such as nonstatistical interactions between
quasiparticles and nonzero temperatures.
Given the robust, universal nature of our result and

the fact that the relevant signal can be measured using
preexisting experimental techniques, we propose that
pump-probe spectroscopy can serve as a helpful diagnostic
of quantum spin liquid physics, complementing those
based on conventional linear spectroscopy.
Linear and pump-probe spectroscopy.—In this Letter we

will be concerned with a particular form of nonlinear
response known as pump-probe spectroscopy [37,38].
First, let us briefly review conventional light-based linear
spectroscopy. Here, a sample in an equilibrium state ρ̂0 is
perturbed by a weak pulse, which we will dub “probe.”
Subsequently, the light reemitted from the sample is measu-
red, the signal fromwhich can be used to infer the dynamical
correlator χð1Þðt1; t2Þ ¼ L−2hÂ2ðt1 þ t2ÞÂ1ðt1Þi0 (see, e.g.,
Ref. [38]). Here Â1;2ðtÞ ¼ eiĤtÂ1;2e−iĤt are time-evolved
operators in the Heisenberg picture, the expectation value
h� � �i0 is with respect to ρ̂0, and we have divided by the
system volume L2 to ensure that χð1Þ is intensive. The
operators Â1;2 depend on the specific light-matter coupling
in the system, and our findings do not depend on their
details. However, as customary in solid-state systems, we
assume that Â1;2 only contains zero-wave-vector (q ¼ 0)
components.

In pump-probe spectroscopy, the system is first brought
out of equilibrium by an initial “pump” pulse of light, be-
fore the probe pulse is applied. This initial pulse is typically
short and intense, and so we can describe its effect as an
instantaneous unitary rotation of the initial equilibrium
state, which without loss of generality can be assumed to
occur at time t ¼ 0. Explicitly,

ρ0⟶
t¼0

pump pulse
ρ̂pert ≔ e−iκÂ0ρ0eiκÂ0 ð2Þ

where Â0 is the operator to which the pump pulse couples,
and κ is a constant controlling the strength of the pulse. The
experiment is repeated with and without the pump pulse,
and the pump-probe signal is defined as the difference
between the dynamical correlation function in each case,
again normalized by the system volume L2

χPPðt1; t2Þ ¼
1

L2
hÂ2ðt1 þ t2ÞÂ1ðt1Þipert − χð1Þðt1; t2Þ: ð3Þ

Here, the expectation value h� � �ipert is evaluated using the
perturbed state (2).
As a final remark on these spectroscopic techniques, we

note that the sequence of pulses described above has
already been implemented in experiments investigating
ultrafast magnetization dynamics of materials with sponta-
neous spin ordering [30–33], enabled by recent develop-
ments in the generation of high-intensity THz-domain
pulses with short time resolution [39,40]. Having defined
and motivated the study of χPP, we now move on to
investigating its behavior in two-dimensional topologically
ordered systems.
Low-energy effective theory.—Equation (3) can be

applied quite generally, provided that one knows the system
Hamiltonian Ĥ and the operators Â0;1;2 to which the
electromagnetic fields couple. These of course depend
on the specifics of the system in question. However, since
we are interested in gapped topologically ordered 2D
systems, the dynamics at sufficiently small temperatures
and frequency ranges—equivalently, large times t1;2—is
well-described by an effective low-energy theory of stable
quasiparticle excitations. Thus, rather than using a particu-
lar microscopic description of Â0;1;2 and Ĥ, we will
compute χPP using this effective quasiparticle theory, the
structure of which is constrained by the topological phase
in which the system is in.
While our results are applicable to any two-dimensional

topological phase, for concreteness and clarity we will
make reference to the Z2 spin liquid phase, which is the
phase to which the toric code belongs [41,42]. (The
generalization to other phases, including non-Abelian
phases, can be found in our companion paper.) Such
systems possess two flavors of quasiparticle excitations,
termed electric (e) and magnetic (m) particles. Each particle
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is bosonic with respect to itself, but electric and magnetic
excitations are mutual semions, meaning that a phase
eiπ ¼ −1 is acquired whenever one moves in a loop around
the other.
The effects of the operators Â0;1;2 will be to create or

annihilate groups of quasiparticles located within a few
correlation lengths ξ of each other. Because of their
topological nature, individual electric or magnetic quasi-
particles cannot be created by local operators in isolation;
instead, they must be formed in pairs ðe; eÞ or ðm;mÞ. We
can therefore approximate the action of Âi as

ÂijVACi ¼
X
α¼e;m

ai;α

Z
d2r⃗jr⃗; r⃗iα;α þ…; ð4Þ

where jr⃗; r⃗0iα;β is a two-quasiparticle state with an excita-

tion of flavor α (β) at position r⃗ ( r0
!
), and ai;α are

coefficients that determine the weights of electric- and
magnetic-anyon pairs, which we treat as phenomenological
parameters. Here we used that Âi is a zero-momentum
operator, i.e., it acts uniformly over all space. Terms with
more than two anyons, which we denote by “…,” give
subleading corrections at long times.
Once created, these quasiparticles will generically be

mobile, having some dispersion relation ϵαðk⃗Þ determined
by the Hamiltonian Ĥ, where α ¼ e, m labels the excita-
tion flavors. For simplicity we will assume ϵðk⃗Þ ¼ Δαþ
jk⃗j2=2mα þOðk3Þ, although the only important aspect is
that the Hessian of ϵðk⃗Þ is nonzero at k⃗ ¼ 0.
Having described the structure of the Z2 spin liquid

quasiparticle theory and the coupling operators Â0;1;2, we
are ready to compute the relevant response coefficients,
starting with the simplest case: linear response. For the time
being, we will set the temperature T ¼ 0, such that
ρ̂0 ¼ jVACihVACj, and neglect interactions between qua-
siparticles, besides the statistical interactions that are
mediated through braiding phases. These assumptions will
be lifted later.
Linear response from Z2 quasiparticle theory.—The

linear response coefficient χð1Þðt1; t2Þ ¼ L−2hÂ2ðt1 þ
t2ÞÂ1ðt1Þi0 can be reduced to a two-quasiparticle problem
using Eq. (4). Starting from the vacuum state, the operator
Â1 creates a pair of quasiparticles at some spacetime
location ðr⃗1; t1Þ, which then propagate and are later
annihilated together by the operator Â2 at ðr⃗2; t2Þ; here
the coordinates r⃗1;2 are to be integrated over according
to (4). Invoking spatial- and time-translational invariance,
for each flavor of quasiparticle α we have a contribution
χð1Þ ∝

R
d2r⃗hr⃗; r⃗je−iĤt2 j0⃗; 0⃗iα;α. At long times t2, this ex-

pression only depends on the quasiparticle dispersion near
the band minimum, and so after making the substitution
ϵαðkÞ ≈ Δα þ k⃗2=2mα we find χð1Þðt1; t2Þ ∝ e−2iΔαt2 × t−12 .

This power law decay of the linear response coefficient is
due to the decreasing amplitude of finding both quasipar-
ticles at the same point in space, which is necessary for their
annihilation due to Eq. (4).
Although the above computation of the linear response

function is straightforward, when it comes to calculating
the analogous pump-probe coefficient it will be more
convenient to adopt a path integral formulation of the
quasiparticle dynamics. Formally, we can write

χð1Þðt1; t2Þ ¼
Z

d2r⃗f

Z
r1;2ðt1þt2Þ¼rf

r1;2ðt1Þ¼0

Dr⃗1ðtÞDr⃗2ðtÞeiS0½r⃗1;2ðtÞ�

ð5Þ

where S0½r⃗1ðtÞ;r⃗2ðtÞ�¼ðmα=2Þ
R t1þt2
t1 dtðjṙ1ðtÞj2þjṙ2ðtÞj2Þ

is the real-time Feynman action for the probe quasiparticles
with a quadratic dispersion, and the path integral is taken
over all trajectories r⃗1;2ðtÞ of the excitations, subject to the
constraints on the initial and final positions.
Pump-probe response coefficient.—The effect of the

pump pulse is to create a population of additional quasi-
particles at time t ¼ 0, which we refer to as “pump anyons”
to distinguish them from the “probe anyons” created by the
probe pulse at t ¼ t1. While a nonperturbative approach
can be employed (see Ref. [36]), here for simplicity we
will expand to leading order in the pump pulse intensity

χPPðt1; t2Þ ¼ κ2χð3ÞPP ðt1; t2Þ þOðκ3Þ (following standard
notation in nonlinear response theory). When we expand
the post-pump state (2) to order κ2, the only terms that
survive involve the creation of a single pair of pump
anyons. If this pair has the same flavor as the probe anyons,
i.e., both electric or both magnetic, then the presence of
these additional quasiparticles will have no bearing on the
subsequent dynamics of the probe anyons, and the first
term in Eq. (3) will exactly cancel with the second. We
therefore consider terms where the pump anyons are
electric (e), and the probe anyons are magnetic (m); the
same considerations apply vice versa. These two species of
quasiparticle are mutual semions, so a phase of eiπ is
incurred whenever pump and probe anyons braid.
Once created, the motion of the pump anyons can be

described semiclassically [34,35] (this approximation is
justified in our companion paper). This means the anyons
are modeled as wave packets of negligible spatial extent
moving at a constant speed set by their group velocity
v⃗k ¼ ∂kϵeðk⃗Þ. The velocities of a pair will be opposite, �v⃗,
and so the trajectories of these excitations will be
x⃗ðtÞ ¼ x⃗i � v⃗t. The initial coordinate x⃗i is uniformly
distributed over all space by virtue of Â0 being translation
invariant [Eq. (4)], while the velocity v⃗ will be distributed
in a way that depends on the microscopic structure of Â0

and the dispersion ϵeðk⃗Þ. The form of this distribution
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pðv⃗Þd2v⃗ will not be important here, and so we leave it
unspecified.
For large enough t1, the pump anyons will be well

separated by the time the probe anyons are created; thus,
processes where two pump anyons braid with the probe
anyons can be ignored. Therefore, let us focus on the
trajectory of a single pump anyon, ignoring the other, and
consider the probability that a braid indeed occurs. This
requires values of x⃗i and v⃗ for which the pump anyon
trajectory threads the spacetime loop formed by the probe
anyon trajectories r⃗1;2ðtÞ; see Fig. 1. For a fixed r⃗1;2ðtÞ, we
denote the probability of this occurring as P½r⃗1;2ðtÞ�. Then,
up to a multiplicative factor, χð3ÞPP is given by the same path
integral as in Eq. (5), but with an additional weighting of
ð−2Þ × P½r⃗1;2ðtÞ�. Here, the factor of −2≡ eiπ − 1 is due to
the subtraction of the two terms in (3), the latter of which is
the same as the first but with all braiding phases set to unity.
The contribution to P½r⃗1;2ðtÞ� coming from pump anyons

with a particular velocity v⃗ is proportional to the area
spanned by coordinates x⃗i such that the line x⃗i þ v⃗t passes
through the spacetime loop formed by r⃗1;2ðtÞ. This area,
which is the blue shaded region in Fig. 1, is a functional of
r⃗1;2ðtÞ and a function of v⃗; we denote it A½r⃗1;2ðtÞ�ðv⃗Þ.
(Interestingly, if one sets v⃗ ¼ 0⃗ then one obtains a func-
tional that appeared in the study of a particle in a random
magnetic field [43].) Note that the resulting expression
is t1 independent since shifts of t1 are equivalent to rigid
translations of the pump anyon trajectories x⃗ðtÞ. Altogether,
we have P½r⃗1;2ðtÞ� ∝

R
d2v⃗pðv⃗ÞA½r⃗1;2ðtÞ�ðv⃗Þ.

Using this expression for P½r⃗1;2ðtÞ�, the pump-probe
response function can actually be evaluated exactly via a
lengthy calculation—see our companion paper for details.
However, we can quickly obtain its asymptotic behavior by
estimating the typical size of A½r⃗1;2ðtÞ�ðv⃗Þ for those

trajectories r⃗1;2ðtÞ that contribute the most to the path
integral (5). Defining the component of x⃗i parallel
(perpendicular) to v⃗ as xk (x⊥), we wish to determine a
typical range over which these coordinates can be varied
while ensuring the trajectories still link. First, x⊥ will span a
range of the order of jr1;⊥ðtÞ − r2;⊥ðtÞj for some inter-
mediate time t1 < t < ðt1 þ t2Þ, where r1;⊥ðtÞ is the
component of r⃗1ðtÞ perpendicular to v⃗. By dimensional
analysis of the Feynman path integral, this distance can be
seen to scale asymptotically as ∼

ffiffiffiffiffiffiffiffiffiffi
t2=m

p
(see also

Ref. [43]). As for the parallel component, a shift xk →
xk þ a is equivalent to a time translation of the pump anyon
trajectory t → tþ a=v. Hence, xk will be varied over a

range ∼jvjt2. Combining these, we find A½r⃗1;2ðtÞ�ðv⃗Þ ∼
jv⃗jt3=22 in the limit of large t2. When we average over the
distribution of velocities pðv⃗Þd2v⃗, this result gives us
P½r⃗1;2ðtÞ� ∼ t3=22 . Evidently, as t2 increases, the probability
of a braid event goes up, due to the increased spacetime
area spanned by the trajectories r⃗1;2.
As mentioned above, χð3ÞPP ðt1; t2Þ only differs from

χð1Þðt2Þ through the presence of a factor of P½r⃗1;2ðtÞ� in
the path integral. When we replace P½r⃗1;2ðtÞ�with its typical
value as estimated above, we obtain our main result,
Eq. (1). (A more detailed calculation in our companion
paper confirms that this scaling behavior does indeed arise
when the full path integral is evaluated).
In this specific case, if we combine Eq. (1) with the linear

response coefficient derived earlier, we find

jχPPðt1; t2Þj ∝
1

t2|{z}
recombination

× t3=22|{z}
probability of braiding

¼ t1=22 : ð6Þ

Interestingly, the probability of braiding increases at a
faster rate than the decay of the pump-probe response
coefficient due to anyons diffusing apart. This means that
the pump-probe response actually grows with time, and
will eventually reach a size where perturbation theory
breaks down [36].
Discussion.—Our result (1) has been derived based on

general considerations about the creation and propagation
of quasiparticle excitations, along with the fusion rules and
braiding relations of the Z2 spin liquid topological phase.
We propose that this is a generic feature of all two-
dimensional topologically ordered phases, both Abelian
and non-Abelian, and that such behavior continues to hold
in the presence of nonuniversal short-ranged interactions
and/or small nonzero temperatures. Concrete justifications
of this statement are given in our companion paper [36];
here we summarize some intuitive arguments that support
our claim.
In other topologically ordered phases, the operators

Â0;1;2 will create multiplets of anyons whose mutual

FIG. 1. The area functional A½r⃗1;2ðtÞ�ðv⃗Þ measures the range of
initial coordinates x⃗i for which the pump trajectory x⃗ðtÞ ¼ x⃗i þ
v⃗t links with the spacetime loop formed by r⃗1;2ðtÞ—only these
trajectories contribute to χPP [Eq. (3)]. At large times, this area
scales as t3=22 , leading to Eq. (1).
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braiding phases may be different. If the braiding relation-
ship between pump and probe anyons is a phase different
from eiπ (but still nontrivial), then all that changes is the
prefactor of (eiπ − 1), and (1) still holds. Moreover, since
the probe anyons become well separated for large t1, the
key physics is not affected if the pump anyons are not
mutually bosonic.
If there are nontrivial braiding (or exchange) phases

between probe anyons, then our representation of the linear
response coefficient [Eq. (5)] will have to be modified to
account for the statistical interactions between anyons [44].
Although these differences will change the behavior of χð1Þ,
we emphasize that the path integral representation of the
pump-probe response coefficient will be modified in
exactly the same way. Importantly, the path integral
representations of the two response coefficients still only
differ by an additional factor proportional to P½r⃗1;2ðtÞ�.
Therefore, provided that typical values of P½r⃗1;2ðtÞ� scale in
the same way with t2 (which can be argued on dimensional
grounds [36]), we will find that (1) still holds.
We now consider the impact of nonstatistical interactions

and finite temperatures, which were heretofore neglected.
As for the former, interactions within the pump anyons
have no bearing once pairs have separated at large enough
t1, as was the case for intra-pump-anyon braiding phases;
similarly, interactions between probe anyons alter χð1Þ and
χPP in exactly the same way, which as we saw above does
not change the asymptotic scaling (1). We are then left with
interactions between pump and probe multiplets. The
probability that a probe anyon is deflected by a pump
anyon can be estimated using scattering theory—if v⃗ is the
pump anyon velocity then Pscat ∼ jv⃗jt2σλ, where λ is the
area density of anyons created by the pump pulse and σ is
the scattering cross section [35]. This scales slower than the
t3=22 scaling of the braiding probability, and so the con-
tributions to χPP coming from nonstatistical interactions are
subleading compared to the dominant signal (1). The
contrasting behavior of the braiding vs scattering proba-
bilities is due to the fact that scattering requires excitations
to be within some small distance of each other, whereas
braiding can occur even when all particles remain far apart
from each other at all times.
At finite temperatures, there will be an excess population

of anyons present in both the linear and pump-probe
response functions. These can braid with and/or scatter
the probe anyons, which generally has the effect of sup-
pressing the two-point correlation function. As it turns out,
this suppression leads to modulation of the response
coefficients by a “squished exponential” expð−½t2=τT �3=2Þ,
where τT is a nonuniversal temperature-dependent timescale
—see our companion paper for details [36]. Importantly,
once again the linear and pump-probe response coefficients
are affected in exactly the same way, and so Eq. (1) is
unaffected; however, to experimentally confirm this, onewill
need to find a time window such that the asymptotic form

has been reached, but that the decay of each signal due to
thermally activated anyons is not so strong such that their
magnitudes are immeasurably small.
Experimental implications.—Our results demonstrate

that fractional statistics can be inferred from time domain
measurements, even without spatial resolution. This estab-
lishes the feasibility of a new class of future experiments for
the detection of QSLs, which offer more conclusive
signatures than inferences based on the diffusivity of
inelastic neutron scattering cross sections.The question
of whether a definitive enough signature can be seen in
any given experiment will depend on the specifics of the
material being investigated and the temporal resolution of
the chosen spectroscopic methods; thus to assess near-term
applications, it is instructive to focus on a particular QSL
candidate currently under investigation. We consider
α-RuCl3, where there is evidence for a magnetic field-
induced gapped QSL phase [45–48] (the anyons in this
putative phase are non-Abelian, but the above arguments
still hold [36]).
Observing the universal signature (1) requires the exist-

ence of a window of times t2 where transient contributions
[oðt3=22 Þ] have subsided, but attenuation of the signal due to
extraneous effects is minimal. Transients arise from anhar-
monicities in the dispersion ϵαðkÞ, which can be neglected
for times beyond the inverse bandwidth of the anyons
ðΔϵÞ−1. Based on estimates of the magnetic interaction
strength J ∼ 70–90 K for α-RuCl3 [12], along with DFT
band structure calculations [49], this requires t2 ≳ 1 ps.
Assuming that nonstatistical anyon-anyon interactions are
short ranged, impurity scattering is the only mechanism by
which the signal can decay at strictly zero temperature.
Using an estimate of the scattering rate τ−1scat ¼ Jða=λmfÞ,
where λmf is the mean free path, we see that such effects
only set in after a much longer time t2 ≫ J−1, provided that
λmf is much greater than the lattice spacing a, which is
indeed satisfied for any reasonable disorder strength. At
nonzero temperatures, scattering between thermally gen-
erated anyons and those created by the light pulses leads to
decay of the signal, but using an estimate of the excitation
gap obtained from neutron scattering data Δ ≈ 2 meV [50],
this should be highly suppressed at operating temperatures
T < 20 K. Given that picosecond-resolved nonlinear spec-
troscopy measurements have already been achieved in
magnetic materials [30–33], we anticipate that the signal
(1) should be detectable using temporal resolutions and
temperature regimes that are currently accessible.
As a final remark, we note that due to the q ¼ 0 nature of

the signal, the universal physics should be present irre-
spective of the sample geometry, and possibly even in
powdered samples.
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in anyon collisions, Science 368, 173 (2020).

[20] James Nakamura, Shuang Liang, Geoffrey C Gardner, and
Michael J Manfra, Direct observation of anyonic braiding
statistics, Nat. Phys. 16, 931 (2020).
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