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Frustrated spin systems have traditionally proven challenging to understand, owing to a scarcity of
controlled methods for their analyses. By contrast, under strong magnetic fields, certain aspects of spin
systems admit simpler and universal description in terms of hardcore bosons. The bosonic formalism is
anchored by the phenomenon of Bose-Einstein condensation (BEC), which has helped explain the
behaviors of a wide range of magnetic compounds under applied magnetic fields. Here, we focus on the
interplay between frustration and externally applied magnetic field to identify instances where the BEC
paradigm is no longer applicable. As a representative example, we consider the antiferromagnetic J1-J2-J3
model on the square lattice in the presence of a uniform external magnetic field, and demonstrate that the
frustration-driven suppression of the Néel order leads to a Lifshitz transition for the hardcore bosons. In the
vicinity of the Lifshitz point, the physics becomes unmoored from the BEC paradigm, and the behavior of
the system, both at and below the saturation field, is controlled by a Lifshitz multicritical point. We obtain
the resultant universal scaling behaviors, and provide strong evidence for the existence of a frustration and
magnetic-field driven correlated bosonic liquid state along the entire phase boundary separating the Néel
phase from other magnetically ordered states.
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Introduction.—Bose-Einstein condensates and super-
fluids are the most generic ground states of repulsively
interacting, dense Bose gases above one dimension [1]. For
bosons hopping on a lattice, additional possibilities, such as
Mott insulating phases, become possible at strong repulsive
interactions [2]. It has been suggested that, under sui-
table conditions, interacting bosons may also exist in a
symmetric quantum-liquid state—a Bose metal, which is
stabilized by an interplay between interactions and an
enhanced low-energy density of states (DOS) [3,4]. Over
the past decades, the latter property has been utilized for
stabilizing other kinds of Bose liquid states in Rashba
spin-orbit coupled bosons [5], deconfined critical points
between valence bond solids [6], superfluid phases in the
dipolar Bose-Hubbard model [7], certain tensor gauge
theories [8], and fractonic superfluids [9]. Unlike their
fermionic counterparts, pure bosonic systems are compa-
ratively rare in nature. It is, therefore, important to identify
new platforms which may support unconventional phe-
nomenology of bosonic systems.
Because of the connection between localized spins and

bosons, frustrated magnets are promising candidates for
realizing unconventional bosonic matter. Frustrated mag-
netic systems, however, pose significant challenges to a
theorist, owing to a scarcity of controlled approaches,
especially for low-spin systems [10,11]. A rare avenue
becomes available in the presence of a uniform magnetic
field—since all spins in any quantum magnetic system will

polarize when exposed to a sufficiently strong magnetic
field, quantum fluctuations are suppressed in the vicinity
of the resultant field-polarized (FP) state. In this region,
the system can be mapped to a dilute gas of interacting
bosons [12], and frustration manifests itself in the bosonic
band structure. Indeed, much of the conventional phe-
nomenology of interacting dilute Bose gases has been
realized in such magnetic systems, including BEC, super-
fluidity, and Mott transition [13,14]. Since the degree of
frustration acts as an additional nonthermal tuning param-
eter, it introduces the possibility of realizing unconven-
tional states of bosonic matter [15–18], which bear
similarities with those proposed in spin-orbit coupled
bosonic systems [19,20]. In this Letter, we focus on the
vicinity of multicritical points that arise at the intersections
of frustration-driven and magnetic-field-driven continuous
phase transition lines. While frustration tends to stabilize
quantum paramagnetic states, a high magnetic field nearly
saturates the spins. As we shall show, the combined effect
of the two nonthermal agents facilitates a controlled access
to Bose liquid states in frustrated magnets under an applied
magnetic field, which are analogs of Bose metals and have
remained unexplored in this context.
The zero-temperature transition between an FP and a

magnetically ordered state is expected to be continuous,
whereby the spin-rotational symmetry perpendicular to the
field-polarization direction is spontaneously broken. The
transition belongs to the “BEC universality class,” which is
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characterized by the dynamical critical exponent z¼ 2 [21].
Extensive experiments on antiferromagnets and quantum
paramagnets have established the importance of BEC-
based perspective in understanding the physics of a wide
variety of magnetic compounds under applied magnetic
fields [22–39]. In this Letter, we propose scenarios where
this conventional outcome breaks down. In particular, we
establish (i) transitions that go beyond the BEC universality
class, and (ii) explore the possibility of emergent Bose
metallic physics in spin systems exposed to strong mag-
netic fields. We expect our results to be relevant to
frustrated magnets with signatures of spin-liquid correla-
tions under high magnetic fields [40–43].
Model and phase diagram.—We consider a spin-1

2
Heisenberg model on the square lattice with antiferromag-
netic interactions beyond nearest-neighbor,

H0 ¼ J1
X
hrr0i

S⃗r · S⃗r0 þ J2
X
⟪rr0⟫

S⃗r · S⃗r0 þ J3
X

⋘rr0⋙

S⃗r · S⃗r0 ; ð1Þ

where all Jn > 0, and S⃗r represents the three-component
spin-1=2 operator at site r. We employ J1 as the overall
energy scale, and define dimensionless ratios X̃ ¼ X=J1 for
any quantity X that possesses the dimension of energy. The
classical phase diagram, obtained by analyzing Luttinger-
Tisza (LT) bands [44], is presented in Fig. 1(a). For J̃2 þ
2J̃3 < 1=2 a Néel antiferromagnet (AFM) is realized.
In the complement of this region, classically, various spiral
and stripe ordered phases are expected. The transitions
between Néel and spiral ordered phases are expected to be
second order, with a continuous evolution of the ordering
wave vector (see, e.g., Ref. [45]), which manifest them-
selves as Lifshitz transitions of the LT band structure. The
corresponding critical points lie along the line J̃2 þ 2J̃3 ¼
1=2 with J̃3 > 0, henceforth labeled as “critical line 1”
(CL1) [46]. Because of the enhanced DOS on CL1,
quantum fluctuations may be expected to sup-
press magnetic order in its vicinity [47–50]. Recent
numerical simulations support this expectation, and quan-
tum spin-liquid states have been reported in the vicinity of
CL1 [51–53].
We introduce a uniform magnetic field B such that

the system is governed by HðhÞ ¼ H0 − h
P

r S
ðzÞ
r , where

h ≔ gμBB is the Zeeman field with g and μB denoting the
Landé g-factor and Bohr magneton, respectively. The
magnetic field tends to polarize the spins along the ẑ
direction, and cants the AFM order. At sufficiently high
fields (h > hc with hc being the saturation field), the canted
AFM phases give way to FP states, which are classical
ground states with all spins polarized along the magnetic
field direction (ẑ). A constant-J̃3 slice of the resultant phase
diagram in the large-S limit is depicted in Fig. 1(b). In this
Letter, we focus on the neighborhood of the transition
between the canted AFM and FP phases. In particular, we

ask how the transition is affected by the Lifshitz criticality
along CL1. We formulate a scaling theory for the multi-
critical points at the intersection of the saturation-field
surface and CL1 [see Fig. 1(b)], and demonstrate the
existence of magnetic field-tuned transitions belonging
to a non-BEC universality class for all points on CL1.
These non-BEC critical points strongly affect the phase
diagram in their vicinity, most remarkably through the
stabilization of a quantum-liquid state at subcritical fields.
Non-BEC transitions.—In the vicinity of hc, spin fluc-

tuations may be conveniently modeled by density and phase
fluctuations of hardcore bosons through the Matsubara-

Matsuda transformation [54,55], SðþÞ
r → b†r ; Sð−Þr → br;

SðzÞr → 1
2
− ρr. Thus, we rephrase the problem in terms of

the hardcore bosons br, with ρr being their local density. The
Hamiltonian acquires the form of a Bose-Hubbard model on
the square lattice

HðhÞ¼
Z

d2K
ð2πÞ2 ½EðKÞ−μðhÞ�bðKÞ†bðKÞ

þ
Z

d2Q
ð2πÞ2VðQÞρð−QÞρðQÞþU

X
r

nrðnr−1Þ; ð2Þ

where the last term enforces the hardcore condition in the
limit U → ∞ [55]. The “chemical potential,” μðhÞ ¼P

3
i¼1 Ji − h, tuned by h, controls the average density of

bosons. The dispersion EðKÞ and the coupling function
VðQÞ are independent of h, but sensitive to the Jn’s [44]. In
particular, EðKÞ tracks the LT band structure, and reflects the
singularities at the classical phase boundaries: at a fixed J̃3
and as a function of J̃2, the boson band undergoes Lifshitz
transitions as the critical lines are crossed [56]. We note that
XXZ anisotropies, if present, can be absorbed in VðQÞ.
In the Néel AFM phase the dispersion is minimized at

the M point of the BZ. Thus, the long-wavelength
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FIG. 1. Phase diagrams in the absence and presence of an
externally applied magnetic field (h). (a) Classically, at h ¼ 0,
four antiferromagnetic phases are obtained, which are separated
by critical lines (CLn). (b) These phases develop canting with h,
before continuously transitioning to field-polarized states at
sufficient high h > hc (brown curve). Multicritical points (filled
squares and circles) are obtained at the intersection of all critical
lines. The phase boundaries in (b) are obtained from a linear spin-
wave analysis at a fixed J3=J1 [dashed line in (a)].
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fluctuations of the bosons Φ carry momenta in the
vicinity of the M point, and the low-energy effective
theory governing these fluctuations is given by SM ¼R
dτdrLM½Φðτ; rÞ� with

LM½Φ� ¼ Φ�½∂τ þ εð∇Þ − μeff �Φþ gjΦj4; ð3Þ

where we have expanded the dispersion as Eððπ; πÞ þ kÞ ¼
−E0 þ J1εðkÞ such that εðkÞ ≥ 0, and defined the effective
parameters μeff ¼ J1ðh̃c − h̃Þ with h̃c ¼ ð3 − J̃2 − J̃3Þ, and
g ≔ ṼðQ ¼ 0Þ ¼ 2ð1þ J̃2 þ J̃3Þ. The magnetic field-
driven transition can be understood as a transition between
a state with no bosons (an FP state; μeff < 0≡ h > hc) to a
state with a finite density of bosons (μeff > 0≡ h < hc).
The transition itself is described with respect to the critical
point at μeff ¼ 0≡ h ¼ hc. If a magnetic long-range
order is present for h < hc, the bosons develop an off-
diagonal long-range order (ODLRO), which implies a BEC
state [1,57] with hΦi ≠ 0. As CL1 is approached from the
Néel AFM side of the phase diagram, does the field-driven
transition continue to be described by the BEC universal-
ity class?
We answer this question by first noting the dispersion

about the band minimum in the vicinity of CL1,

εðk;mLÞ¼mLjkj2þAcosγðk4xþk4yÞþ2Asinγk2xk2y; ð4Þ

where the “Lifshitz mass” mL ¼ ð1=2 − J̃2 − 2J̃3Þ, and the
parameters A ¼ 1

24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36J̃22 þ ð2J̃2 þ 16J̃3 − 1Þ2

q
and γ ¼

tan−1f6J̃2=ð2J̃2 þ 16J̃3 − 1Þg [44]. In the parameter regime
where mL > 0, the field-driven transition belongs to the
BEC universality class. As CL1 is approached,mL → 0 and
the field-driven transition belongs to a distinct universality
class that is controlled by the Lifshitz multicritical point
(LMCP) at h ¼ hc and J̃2 ¼ J̃2c. At the LMCP, although
μeff ¼ 0, strong quantum fluctuations arise in the presence
of interactions among bosons, owing to the divergent DOS.
Consequently, Veff becomes strongly relevant at the
Gaussian fixed point governed by the first term in
Eq. (3). This strong coupling theory, however, is exactly
solvable at T ¼ 0, due to the absence of particle-hole
excitations [12,21,58]. In particular, the positive semidefi-
niteness of εðqÞ leads to a chiralitylike constraint on the
bosonic dynamics, which protects the quadratic terms in the
action against quantum corrections [44,59]. This is analo-
gous to chiral fermionic liquids, where tree-level or classical
critical exponents remain robust against quantum fluctua-
tions, thanks to the chiral dynamics [60,61]. Thus, in the
present case, the tree-level critical exponents

z¼ 4; νh ¼ 1=4; νJ ¼ 1=2; η¼ 0; ð5Þ

do not accrue anomalous dimensions through quantum
fluctuations [44]. Here, z is the dynamical critical exponent,

νh and νJ control the scaling of the correlation length alongh
and J2 axes, respectively, and η is the anomalous dimension
ofΦ. Since this is a multicritical point, the correlation length
with respect to the LMCP is given by ξ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ−2h þ ξ−2J

p
with ξh ∼ jh − hcj−νh and ξJ ∼ jJ2 − J2cj−νJ . The critical
exponents imply themagnetic field-driven transition at J2 ¼
J2c does not belong to the BEC universality class, which
would have been characterized by ξ ∼ jh − hcj−1=2.
In contrast to the particle-hole channel, nontrivial quan-

tum fluctuations are present in the particle-particle channel,
which drive the system toward an interacting fixed point.
To see this, we perform Wilsonian renormalization group
(RG) analysis at d ¼ 4 − ϵ, where d is the number of spatial
dimensions. We obtain the following one-loop RG flow of
the parameters in LM [44]:

∂lḡ¼ ϵḡ−
fgðγÞḡ2
16π2A

; ∂lμ̄¼4μ̄; ∂lm̄L¼2m̄L; ð6Þ

where l is the logarithmic length scale, ðḡ; μ̄; m̄LÞ ¼
ðΛ−ϵg;Λ−4μeff ;Λ−2mLÞ, Λ is the ultraviolet (UV) momen-
tum cutoff, and fgðγÞ ¼

R
1
0 dt½ft2 þ ð1 − tÞ2g cos γ þ

2ð1 − tÞt sin γ�−1 . Since the LMCP is a multicritical point,
it has two independent relevant directions, μ̄ and m̄L. By
maintaining multicriticality of the LMCP, i.e., setting the
bare values m̄ ¼ 0 ¼ μ̄, we obtain a stable fixed point at
½ḡ�; μ̄�; m̄L;�� ¼ f16π2Af−1g ðγÞϵ; 0; 0g. Extrapolating the
result to ϵ ¼ 2, yields a fixed-point coupling ḡ� ¼
32π2Af−1g ðγÞ, which is independent of the UV structure
of the interaction vertex, such as XXZ anisotropies.
Because of its dependence on A and γ, ḡ� varies along
CL1, as shown in Supplemental Material, Fig. S2 [44]. In
particular, as the critical point at ðA; γÞ ¼ ð1

8
; π=2Þ≡

ðJ̃2; J̃3Þ ¼ ð1
2
; 0Þ is approached along CL1, fgðγÞ∼

ln½1=ðπ=2 − γÞ� ≫ 1; consequently, the fixed point is
pushed to weaker couplings, and the one-loop result
appears to become more accurate as γ → π=2.
Multicriticality and crossover behaviors.—The LMCP is

an example of “zero-scale-factor universality,” and the
scaling functions for all observables are completely deter-
mined by microscopic or bare parameters [21]. Here, we
focus on finite-temperature properties within the multi-
critical cone emanating from the LMCP, as depicted in
Fig. 2(a). The shape of the cone is controlled by the

temperature scale, T� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
�;h þ T2

�;J
q

with T�;h ∼ ξ−zh ∼
jh − hcj and T�;J ∼ ξ−zJ ∼ jJ2 − J2cj2. Although the density
of bosons at h ¼ hcðJ̃2Þ vanishes at T ¼ 0, thermal
fluctuations at T > 0 makes it finite. Therefore, we expect
the magnetization at T > 0 would be suppressed below that
in the FP state. Using a finite-T scaling analysis [21,62], we
estimate the average boson density to scale as

ρ0ðTÞ≡ hρðTÞi ¼ Td=4fTðT�=TÞ; ð7Þ
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where the dimensionless function has the limiting behavior,
limx≪1fTðxÞ ¼ Oð1Þ and limx≫1 fTðxÞ ∼ 1=

ffiffiffi
x

p
. At the

LMCP T� vanishes, and only the former limit is applicable.

In d ¼ 2 this leads to ρ0ðTÞ≡ ½1
2
− hSðzÞr i� ∼ ffiffiffiffi

T
p

. Away
from the LMCP, but along the BEC transition line, ρ0ðTÞ
displays a crossover behavior. At low temperatures
(T ≪ T�) the BEC critical points dictate the scaling and
ρ0 ∼ T. At sufficiently high temperatures (T ≫ T�), how-
ever, the system enters the critical cone and ρ0 ∼

ffiffiffiffi
T

p
. This

crossover behavior is depicted in Fig. 2(b).
The LMCP’s influence on the phase diagram at sub-

critical fields can be understood in terms of the density and
phase fluctuations of the bosons. While a finite mean-
density reflects the deviation of hSðzÞi from 1=2, phase
fluctuations determine the correlation between SðþÞ and
Sð−Þ. First, we consider the asymptotic behavior of the
mean density in the region 0 < ð1 − h=hcÞ ≪ 1, which
corresponds to 0 < μeff ≪ J1. From one-loop RG analysis,
we obtain the scaling of the mean density with μeff ,

ρ0ðμeffÞ ¼ μd=4eff fhðm2
L=μeffÞ: ð8Þ

The dimensionless scaling function fhðxÞ, is such that
limx≪1fhðxÞ ¼ Oð1Þ and limx≫1 fhðxÞ ∼ 1=

ffiffiffi
x

p
. Therefore,

for a fixed μeff=J1 at d ¼ 2, as the system is tuned toward
the LMCP from the canted Néel phase, the asymptotic
scaling of ρ0 ¼ ½1=2 − hSðzÞi� crosses over from ρ0 ∼
ðhc − hÞ → ðhc − hÞ1=2. We verify this crossover behavior
through unbiased numerical calculations using infinite
projected entangled-pair states (iPEPS) [63] as demon-
strated in Fig. 3. We note that iPEPS works directly in
the thermodynamic limits by exploiting translation invari-
ance [64]. The accuracy of this variational ansatz is
controlled by the bond dimensionD of the tensors involved
in their construction, which is related to the entanglement
of the state.
Emergent algebraic liquid.—In order to understand the

behavior of phase fluctuations at subcritical fields we
introduce the hydrodynamic variables ϑ and ϱ, which
represent the long-wavelength phase and density fluctua-
tions, respectively, of boson field,

Φðτ; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0 þ ϱðτ; rÞ

p
eiϑðτ;rÞ: ð9Þ

For J̃2 < J̃2c the FP state transitions into a canted Néel-
AFM as h is lowered below hc. This phenomenon is
reflected in an U(1) symmetry breaking transition for the
bosons, whereby hΦi ∼ ffiffiffiffiffi

ρ0
p

e−
1
2
hϑ2i ≠ 0, which implies the

existence of an ODLRO, hence a BEC [1,57]. As J̃2 → J̃2c,
the condensate fraction ∼hΦi is suppressed due to
increased phase fluctuations. What is the fate of the system
as hΦi → 0?

(a)

slope = 0.5
slope = 1.0

10–8 10–4 1 104 108
10–8

10–4

1

104

T/T*

ρ 0

(b)

FIG. 2. Signatures of Lifshitz multicriticality. (a) The multi-
critical point (red dot) controls finite-T behaviors of the system
within the (orange) critical cone. (b) Crossover behavior of ρ0
with T [cf. Eq. (7)]. The circles (lines) are numerically evaluated
values of ρ0 (fits to the data). The unequal slopes indicate a
crossover from ρ0 ∼ T →

ffiffiffiffi
T

p
. Here, T� is the temperature scale

associated with the cone in (a).

FIG. 3. Crossover in the scaling of ½1=2 − hSðzÞi� with Δh ≔
ðhc − hÞ with increased frustration, obtained from iPEPS simu-
lations. The data are fitted to the function, ½1=2 − hSðzÞi� ¼
α1Δh lnðhc=ΔhÞ þ α2

ffiffiffiffiffiffiffi
Δh

p
. Deep in the Néel phase the transition

belongs to the Bose-Einstein-condensation universality class;
consequently, α1 is Oð1Þ (inset) and α2 ≪ 1. Upon approaching
the classical phase boundary, the ratio α2=α1 increases with
α1 → 0. The shaded region indicates the regime where a quantum
spin liquid state has been reported at h ¼ 0 [52]. The dotted
(dashed) line is an extrapolation of the data toward J̃2c (marks
J̃2c). Here, we have fixed J̃3 ¼ 1=8.
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The dynamics of Φ, as dictated by SM, is controlled by
two independent length scales, ρ−1=20 and m−1=2

L . We fix the
mean density ρ0 (for fields h < hc) and consider the
influence of mL (which controls proximity to CL1) on
the dynamics. The phase fluctuations are governed by the
effective action [44]

Sϑ ¼
Z

dk0dk
ð2πÞ3

�
k20
4g

þ ρ0εðk; mLÞ
�
ϑð−kÞϑðkÞ; ð10Þ

where k0 is the Euclidean frequency. We note that the
propagator of ϑ is nonperturbative in g, and the phase
fluctuations disperse as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gρ0εðk; mLÞ

p
, which is analo-

gous to the dispersion of magnons in the canted Néel phase.
The long-wavelength behavior of the equal-time correlation
function,

hSðþÞ
0 Sð−Þr i∼hΦ†ð0;0ÞΦð0;rÞi¼ρ0exp½−Γðr;ξLÞ�; ð11Þ

is determined by the correlation length ξL ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
A=mL

p
through Γðr; ξLÞ [44]. The function Γðr; ξLÞ is most
easily computed along the line γ ¼ π=4, on which
εðk; mLÞ acquires an C∞-rotational symmetry and
ξL ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J̃2=ð1 − 4J̃2Þ

p
. As shown in Fig. 4, for jrj ≫ ξL,

hSðþÞ
0 Sð−Þr i saturates to a nonuniversal value (dependent on

ρ0 and ξL), implying the presence of ODLRO in Φ [65]. In
the opposite limit, a universal scaling is obtained, indicat-
ing the presence of a quantum critical point (QCP) as
ξL → ∞ (dashed line in Fig. 4). This putative QCP is
characterized by the absence of an BEC, i.e., hΦi ¼ 0. At
small but finite T the canted Néel phase possesses only a
quasi-long-range order, and goes through a Berezinskii-
Kosterlitz-Thouless (BKT) transition upon raising T. Since
the BKT transition scale TBKT is controlled by mL, it is
expected to be suppressed as CL1 is approached. Thus, the
resultant crossover behavior is controlled by the critical fan

emanating from the critical point at mL ¼ 0≡ J̃2 ¼ J̃2c for
h < hc [see Fig. 1(b)].
Interestingly, the QCP realizes a higher-dimensional

analog of the Luttinger liquid, where a condensate cannot
form due to strong infrared fluctuations. For sufficiently
strong magnetic fields, and in the absence of proliferation
of vortices of Φ [66], all points on CL1 host such algebraic
liquid states, which are parametrized by the critical expo-
nent W that controls the long-wavelength behavior of
transverse spin correlations:

hSðþÞ
0 Sð−Þr i ∼ ρ0ðjrjΛÞ−W : ð12Þ

We find that W ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ðρ0A

p ÞfwðγÞ, with fw being a
dimensionless function [44]. While generic points on
CL1 possess a C4 rotational symmetry, an C∞ symmetry
emerges at γ ¼ π=4, where CL1 and CL2 intersect (see
Fig. 1). The C∞ critical point would be expected to control
the high-energy behavior in its vicinity, including that
along CL2 where a different kind of higher-dimensional
Luttinger liquid is expected [4,67].
Conclusion.—Motivated by the ability of frustration to

stabilize unconventional states of matter in quantum-spin
systems, we studied its interplay with an applied magnetic
field. With the help of the J1-J2-J3 antiferromagnetic
Heisenberg model, we demonstrated that frustration limits
the validity of the BEC paradigm in describing the app-
roach to saturation field. In particular, the phase transition
between magnetically ordered and field-polarized states no
longer belongs to the BEC universality class on the critical
line CL1, along which frustration suppresses magnetic
order. A similar outcome is expected along CL2 and CL3,
where the corresponding transitions are governed by
distinct non-BEC universality classes.
In the vicinity of CL1, at subcritical fields, it is possible

to realize bosonic quantum-liquid states that are stabilized
by a combination of frustration and high magnetic fields.
These quantum liquids are higher-dimensional analogs of
gapless states that develop under sufficiently high mag-
netic fields in the spin-1 Haldane chain [21] and 1D
valence bond solids [68]. We note that mechanisms
similar to that described here may be responsible for
stabilizing the quantum spin-liquid phase in the Kitaev
honeycomb compass model in magnetic field along the
[111] direction [69]. A detailed investigation into such
possibilities is left to future works.
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