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The square-lattice Hubbard and closely related t-J models are considered as basic paradigms for
understanding strong correlation effects and unconventional superconductivity (SC). Recent large-scale
density matrix renormalization group simulations on the extended t-J model have identified d-wave SC on
the electron-doped side (with the next-nearest-neighbor hopping t2 > 0) but a dominant charge density
wave (CDW) order on the hole-doped side (t2 < 0), which is inconsistent with the SC of hole-doped
cuprate compounds. We re-examine the ground-state phase diagram of the extended t-J model by
employing the state-of-the-art density matrix renormalization group calculations with much enhanced bond
dimensions, allowing more accurate determination of the ground state. On six-leg cylinders, while different
CDW phases are identified on the hole-doped side for the doping range δ ¼ 1=16 − 1=8, a SC phase
emerges at a lower doping regime, with algebraically decaying pairing correlations and d-wave symmetry.
On the wider eight-leg systems, the d-wave SC also emerges on the hole-doped side at the optimal 1=8
doping, demonstrating the winning of SC over CDW by increasing the system width. Our results not
only suggest a new path to SC in general t-J model through weakening the competing charge orders,
but also provide a unified understanding on the SC of both hole- and electron-doped cuprate super-
conductors.
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Introduction.—Understanding the mechanism of uncon-
ventional superconductivity (SC) in cuprates is a major
challenge of condensed matter physics [1,2]. Soon after the
discovery of cuprate superconductors, the resonating
valence bond theory [3] was proposed to describe uncon-
ventional SC. The square Hubbard (with large U) and
closely related t-J models are considered as the minimum
models [1–8] to realize unconventional SC, which have
attracted intense explorations [6–14]. However, it remains
illusive if these models can describe the SC of cuprates.
In the presence of strong correlations, analytical solutions
are not controlled, while numerical studies in the relevant
regime [15–48] are also extremely difficult in determining
the ground state due to the extensive entanglement
and low-energy excitations associated with competing
spin and charge degrees of freedom. In recent years,
numerical simulations have reached a possible consensus
on the ground states of the pure large-U Hubbard and t-J
models near the optimal doping, which is the stripe phase
[15–28] characterized by a charge density wave (CDW)

order coexisting with π-phase shifted antiferromagnetic
domains, accompanied by exponentially decaying SC
correlation.
On the other hand, the Fermi surface topology identified

experimentally for cuprates indicates the importance of a
small next-nearest-neighbor hopping t2 [49], with the sign
of t2 modeling the hole- (t2 < 0) and electron-doped
(t2 > 0) cuprates, respectively [50]. Numerical studies on
four-leg Hubbard and t-J models find that introducing
either positive or negative t2 can lead to the coexistence of
quasi-long-range SC and CDWorders [37–40]. To improve
our understanding of how these orders evolve toward
two dimensions (2D), recent density matrix renormaliza-
tion group (DMRG) studies on six- and eight-leg t-J model
(with the nearest-neighbor hopping t1 > 0) have identified
a robust d-wave SC with suppressed CDW at t2 > 0
[41–43], giving insights into the SC of electron-doped
cuprates. For t2 < 0, the stripe order appears to win over SC
near the optimal doping [41,44,51], in sharp contrast with
hole-doped cuprates [52]. However, while accurate DMRG
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simulations have been applied to six-leg ladders [42,43,51],
large-bond-dimension simulations are absent for eight-leg
systems, which leaves the true nature of the ground state of
the hole-doped t-J model an open question.
In this Letter, we study the phase diagram of the hole-

doped t-J model and examine the interplay between
SC and CDW through accurate DMRG calculations. By
tuning the doping level δ and hopping ratio t2=t1 on six-leg
system, we identify the dominance of CDW phases at
δ ¼ 1=16 − 1=8. However, the SC and weak CDW can
coexist at lower doping region δ ¼ 1=24 − 1=36 [Fig. 1(a)],
where pairing correlations show the d-wave symmetry
and slow power-law decay with the exponent Ksc ≲ 1.
Importantly, we observe dominant quasi-long-range SC
order at the optimal doping (δ ¼ 1=8) on eight-leg cylinder
[Fig. 1(b)]. On the electron-doped side (t2 > 0), we confirm
the existence of a robust uniform d-wave SC in agreement
with previous studies [41,44]. On the hole-doped side
(t2 < 0), we observe the remarkable emergence of SC with
weak or vanishing CDWorder in our large-bond-dimension
simulation, with power-law decaying pairing correlations
(Ksc < 2). Furthermore, we confirm the robustness of these
SC phases at different model parameters. Our work suggests
that the t-J model may offer a unified framework for

understanding the unconventional SC for both electron-
and hole-doped cuprates.
Model and method.—The Hamiltonian of the extended

t-J model is defined as

H ¼ −
X

fijg;σ
tijðĉ†i;σ ĉj;σ þ H:c:Þ þ

X

fijg
Jij

�
Ŝi · Ŝj −

1

4
n̂in̂j

�
;

where ĉ†iσ (ĉiσ) is the creation (annihilation) operator of the
electron with spin σ (σ ¼ �1=2) on site i ¼ ðxi; yiÞ, Ŝi is
the spin-1=2 operator, and n̂i ¼

P
σ ĉ

†
iσ ĉiσ is the electron

number operator. The Hilbert space for each site is con-
strained by no double occupancy. We consider the nearest-
neighbor and next-nearest-neighbor hoppings (t1 and t2)
and spin interactions (J1 and J2). We choose J1 ¼ 1.0 and
set t1=J1 ¼ 3.0 to make a connection to the corresponding
Hubbard model with U=t ¼ 12 [54]. The length and width
of the lattice are denoted as Lx and Ly, giving total site
number N ¼ Lx × Ly. The doping ratio δ is defined as
δ ¼ Nh=N (Nh is the number of doped holes). We focus on
the doping regime 1=36 ≤ δ ≤ 1=8 on six-leg cylinders and
δ ¼ 1=8 on eight-leg cylinders, and tune t2=t1 with fixed
relation ðt2=t1Þ2 ¼ J2=J1 [42,43]. We also examine the
SC phases in the t1-t2-J1 model with t1=J1 ¼ 2.5, 3.0, as
shown in Fig. 5.
We solve the ground state of the system by DMRG [55]

calculations with SUð2Þ ⊗ Uð1Þ symmetry implemented
[56]. We study cylindrical systems with open and periodic
boundary conditions along the axial (x) and circumferential
(y) directions respectively, and keep the bond dimensions
of SU(2) multiplets up toD ¼ 15 000 for six-leg and 28000
for eight-leg systems, equivalent to about 45 000 and
84 000 U(1) states, respectively, which ensure accurate
results with the truncation error less than 1.2 × 10−6 for six-
leg and 2.5 × 10−5 for eight-leg systems [see Supplemental
Material (SM) for more details [53] ].
Quantum phase diagram.—Our results are summarized

in the phase diagram Fig. 1 as a function of hopping ratio
t2=t1 and doping level δ. For six-leg system with −0.22 ≤
t2=t1 ≤ 0 [Fig. 1(a)], we identify two charge ordered
phases: a stripe phase with wave vector Q ¼ ð3πδ; 0Þ
and a Wy3 CDW phase with Q ¼ ð6πδ; 2π=3Þ (see SM
for the results of the Wy3 state [53]), which shares a similar
charge density distribution with the W3 phase found in the
t1-t2-J1 model [41]. Strikingly, below δ ¼ 1=18, we find a
quasi-long-range SC order (Ksc ≲ 1) coexisting with a
weak CDW.
For the eight-leg system with −0.2 ≤ t2=t1 ≤ 0.3 at

δ ¼ 1=8 [Fig. 1(b)], a robust d-wave SC order emerges
for t2=t1 ≳ 0.12 with a uniform charge density distribution,
which is similar to the uniform SC phase found on six-leg
cylinder [43]. This uniform SC phase may extend to larger
t2=t1 regime [42,57] and persist in 2D limit. Remarkably,
the quasi-long-range SC order is also observed on the
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FIG. 1. Quantum phase diagrams of the t1-t2-J1-J2 model at
different system widths. (a) Ly ¼ 6 cylinder with −0.22 ≤
t2=t1 ≤ 0 and 1=36 ≤ δ ≤ 1=8. We identify a stripe phase, a
Wy3CDW phase, and a SCþ CDW phase with coexisted d-wave
SC and a weak CDW. (b) Ly ¼ 8 cylinder with −0.2 ≤ t2=t1 ≤
0.3 at δ ¼ 1=8. We identify two SC phases and a stripe phase. The
hole-doped SC phase at t2=t1 < 0 has a weak or vanishing CDW
order. Pairing correlations in the Ly ¼ 8 stripe phase show a slow
increase with bond dimension, but its tendency to develop a
quasi-long-range SC order cannot be pinned down within our
currently accessible bond dimensions. The symbols denote the
parameter points that we have calculated. The same SC phases on
both six- and eight-leg systems are obtained in our model with
ðt2=t1Þ2 ¼ J2=J1 and the t1-t2-J1 model with t1=J1 ¼ 2.5 and 3.0
(see Fig. 5 and SM [53]).
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hole-doped side for t2=t1 ≲ −0.05, which exhibits a very
weak or vanishing charge order. The SC power exponent
Ksc < 2 indicates a divergent SC susceptibility at zero-
temperature limit. This result contradicts a previous work
studying a similar t1-t2-J1 model that claims the absence of
SC at t2 < 0 [41], which may be attributed to the existence
of competing charge ordered states in low-energy regime.
In our calculation, extremely large bond dimensions are
used for reaching convergence and identifying the emer-
gence of SC. For both six- and eight-leg systems at hole
doping, SC emerges through suppressing charge order.
SC pairing correlation.—We examine SC by the dom-

inant spin-singlet pairing correlations Pα;βðrÞ ¼ hΔ̂†
αðr0Þ

Δ̂βðr0 þ rÞi, where the pairing operator is defined as

Δ̂αðrÞ ¼ ðĉr↑ĉrþeα↓ − ĉr↓ĉrþeα↑Þ=
ffiffiffi
2

p
and eα¼x;y denote

the unit vectors along the x and y directions. Since the
wave function in DMRG calculation is represented as a
matrix product state, correlation functions usually decay
exponentially at finite bond dimensions [58]. We make the
bond dimension scaling to demonstrate the true nature of
correlations at D → ∞ (see Fig. 2 and SM [53]).
We first examine pairing correlations on six-leg systems.

In the stripe phase represented by t2=t1 ¼ −0.06 and δ ¼
1=12 [Fig. 2(a)], the pairing correlation PyyðrÞ follows an
exponential decay PyyðrÞ ∼ exp ð−r=ξscÞ with ξsc ≃ 3.69
after the extrapolation toD → ∞. In the SCþ CDW phase,

as shown in Fig. 2(b) for t2=t1 ¼ −0.08, δ ¼ 1=24, PyyðrÞ
increases drastically compared with that in the stripe
phase and exhibits an algebraic decay PyyðrÞ ∼ r−Ksc with
Ksc ≃ 0.82, characterizing a quasi-long-range SC order. We
also confirm that other pairing correlations satisfy
PyyðrÞ ≃ −PyxðrÞ ≃ PxxðrÞ, in accordance with the d-wave
symmetry illustrated in the inset of Fig. 2(b) rather than the
plaquette d-wave symmetry found in the four-leg Hubbard
model at t2 < 0 [39].
To further investigate whether SC can emerge on wider

systems, we extensively simulate the eight-leg cylinder at
δ ¼ 1=8, which is more relevant to the experiments of
cuprates. For t2=t1 ¼ −0.1 [Fig. 2(c)], the pairing correla-
tions at long distance grow rapidly with bond dimension.
The extrapolated results at D → ∞ can be fitted by a
power-law decay with Ksc ≃ 1.46, demonstrating an emer-
gent quasi-long-range SC order. In the uniform SC phase at
t2 > 0 [Fig. 2(d)], pairing correlation exhibits a slow
algebraic decay with a small exponent Ksc ≃ 0.57 charac-
terizing a robust SC phase. We have also checked the triplet
pairing correlations in both SC phases on eight-leg systems.
While the p-wave symmetry can appear at t2 > 0, the
corresponding pairing correlations always decay very fast,
indicating the absence of triplet SC order [53].
Charge density distribution.—Except in the Wy3 phase,

the converged charge density distributions are uniform
along the y direction, and we show the averaged charge

density for each column as nðxÞ ¼ PLy

y¼1hn̂x;yi=Ly in
Fig. 3. For six-leg systems, we find the CDW wavelength
λ ≃ 4=ðLyδÞ in the stripe phase [Fig. 3(a)], corresponding to
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FIG. 2. SC pairing correlation functions. (a) Semilogarithmic
plot of the pairing correlations PyyðrÞ at different bond dimen-
sions in the stripe phase at Ly ¼ 6. The correlation length
ξsc is obtained by exponential fitting. (b) Double-logarithmic
plot of PyyðrÞ in the SCþ CDW phase on six-leg cylinder. The
dash line represents the algebraic fitting of the data extrapolated
toD → ∞. The power exponentKsc ≃ 0.82 characterizes a quasi-
long-range SC order. The inset shows the d-wave pairing
symmetry. (c) and (d) are similar plots in the hole-doped SC
(t2 < 0) and electron-doped uniform d-wave SC phases (t2 > 0)
on eight-leg cylinders, both with Ksc < 2 indicating the
divergence of SC susceptibilities [59].
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FIG. 3. Charge density profiles nðxÞ in the (a) stripe phase
and (b) SCþ CDW phase on six-leg cylinders with Lx ¼ 48.
The inset of (b) shows the corresponding electron momentum
distribution nðkÞ. (c) Comparing nðxÞ in the SC phase on Ly ¼ 8

and stripe phase on Ly ¼ 6 at t2=t1 ¼ −0.1 and δ ¼ 1=8,
obtained with D ¼ 24 000 and 15 000, respectively. (d) nðxÞ
in the SC phase of eight-leg cylinder at t2=t1 ¼ −0.2, δ ¼ 1=8
obtained by different bond dimensions.
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four holes on average for each CDW unit. In the SCþ
CDW phase, λ ≃ 2=ðLyδÞ indicates two holes per CDW
unit [Fig. 3(b)]. Significantly, the oscillation amplitude of
nðxÞ (i.e., charge order) is much weaker than that in the
stripe phase shown in Fig. 3(a). The momentum distribu-
tion nðkÞ ¼ ð1=NÞPi;j;σhĉ†i;σ ĉj;σieik·ðri−rjÞ in the SCþ
CDW phase [the inset of Fig. 3(b)] exhibits the unenclosed
Fermi surface topology around k ¼ ð�π; 0Þ and ð0;�πÞ in
agreement with that observed in the ARPES measurement
of hole-doped cuprates [49,60,61], which is distinctly
different from the topology for electron doping at t2 > 0
[41,43], where the Fermi surface forms a closed pocket
around k ¼ ð0; 0Þ.
A natural question is how the charge order evolves

toward 2D limit. Crucially, we find that the strong CDW in
the stripe phase for Ly ¼ 6 can be significantly suppressed
on wider system, as shown in Fig. 3(c). The quite weak
charge density oscillation for Ly ¼ 8 is similar to that of the
SCþ CDW phase on six-leg cylinders [Fig. 3(b)], which is
accompanied with the emergent quasi-long-range SC order
[Fig. 2(c)]. In Fig. 3(d) for t2=t1 ¼ −0.2, one can find
the charge distribution is gradually transformed from a
CDW-like pattern to a nearly uniform one with growing
bond dimension, demonstrating an extremely weak or
vanishing charge order in the hole-doped SC phase and
the importance of a large bond dimension for reaching the
true ground state (see SM [53]).

Correlation functions.—In Fig. 4, we further compare
correlation functions in each phase. While all the correla-
tions are presented in the semilogarithmic scale, the
exponents K and correlation lengths ξ are obtained by
power-law and exponential fittings, respectively [53]. For
the stripe phase on six-leg cylinders [Fig. 4(a)], while the
single-particle Green’s function GðrÞ ¼ hPσ ĉ

†
x;y;σ ĉxþr;y;σi

and pairing correlation appear to decay exponentially [53],
the intertwined density correlation DðrÞ ¼ hn̂x;yn̂xþr;yi −
hn̂x;yihn̂xþr;yi and spin correlation FðrÞ ¼ hŜx;y · Ŝxþr;yi
are more dominant at long distance. In contrast, in the
SCþ CDW [Fig. 4(b)], hole-doped SC [Fig. 4(c)], and
uniform d-wave SC phases [Fig. 4(d)], pairing correlations
are dominant over other correlations at long distance.
Furthermore, on eight-leg systems, GðrÞ and FðrÞ show
exponential decay with short correlation lengths at
t2=t1 ¼ 0.3, which is consistent with the DMRG results
of the same model at t2=t1 ≈ 0.5 corresponding to doping
either the J1-J2 spin liquid or valence bond solid [57].
Robust SC phases at different model parameters.—In the

study of extended t-J models, the t1-t2-J1 model with
t1=J1 ¼ 2.5 has also been widely considered [19,41,62].
To confirm the discovered SC phases at hole doping for
different model parameters, we further examine the t1-t2-J1
model with t1=J1 ¼ 2.5 and 3.0 (J2 ¼ 0). By comparing
the pairing correlation and charge density distribution on
six- and eight-leg systems (see Fig. 5 and SM [53]), we
confirm that the identified SC phases are robust against
both a small change of t1=J1 and the absence of J2
interaction.
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FIG. 4. Correlations in different phases. The data are those
extrapolated to D → ∞. Comparison of pairing correlation
PyyðrÞ, charge density correlation DðrÞ, single-particle Green’s
function GðrÞ, and spin correlation FðrÞ for (a) stripe phase at
Ly ¼ 6, (b) SCþ CDW phase at Ly ¼ 6, (c) hole-doped SC
phase at Ly ¼ 8, δ ¼ 1=8, and (d) uniform d-wave SC phase at
Ly ¼ 8, δ ¼ 1=8. The correlations are rescaled by δ to make a
direct comparison. The power exponent K and correlation length
ξ are obtained by algebraic and exponential fittings, respectively
(see the details in SM [53]).
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Summary and discussion.—We have presented a global
picture for both the electron-doped (t2 > 0) and hole-doped
(t2 < 0) t-J models by DMRG calculations. While we
confirm the d-wave SC for electron doping [41] on wider
cylinders, we find that the ground states of the hole-doped
case can also be superconducting, at both the low doping
regime δ ¼ 1=36 − 1=24 for Ly ¼ 6 and optimal doping
δ ¼ 1=8 for Ly ¼ 8 with d-wave symmetry. For δ ¼ 1=8 at
hole doping, SC turns out to be favored on wider system,
where the enhanced phase coherence of paired holes [51]
helps to destabilize CDW and thus allows superconductiv-
ity to develop.
Despite the strong competition between stripe and SC

orders under hole doping [41], the SC phases we obtain on
both six- and eight-leg systems are stable against a small
tuning of t1=J1, and therefore are established as a common
phase for different extended t-J models. Thus, we conclude
that the single-band t-J model has some generic features,
including the uniform SC at electron doping and the
dominant SC with near vanishing or coexisting CDW
order at hole doping, which may provide a basic description
of the cuprate superconductors.
Finally, we discuss some open questions. For the hole-

doped t-J model, the charge order with suppressed SC is
commonly observed as the ground states of narrower
systems (Ly ¼ 6) with hole binding [41,51], which may
have some connection with the pseudogap physics [63,64]
of cuprate systems. The d-wave SC on the electron-doped
side turns out to be robust on wider cylinders. However, the
nature of its magnetic order is still under debate [41,43].
While our analyses of spin correlation lengths suggest a
magnetic order at small doping δ ≃ 1=24, we find the
magnetic order is suppressed for δ ¼ 1=8 as the ratio of
ξs=Ly reduces with increased Ly [53]. For the stripe phase
at Ly ¼ 8 (see SM [53]), the CDW order appears to be
stable with improved bond dimension, but the pairing
correlations keep growing slowly, showing a possible
tendency to develop a weak quasi-long-range SC. We
believe our work will stimulate more future studies to
address these challenging issues.

Note added.—At the final stage of preparing this work, we
have become aware of an independent and related work
focusing on the larger positive t2=t1 ≃ 0.7 regime of the
same t-J model on eight-leg cylinder [57], as well as two
other works focusing on the Hubbard model [65,66]. The
results in Ref. [57] are consistent with our findings
at t2=t1 ¼ 0.3.
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