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Understanding the self-organization of the most promising internal transport barrier in fusion plasmas
needs a long-time nonlinear gyrokinetic global simulation. The neighboring equilibrium update method is
proposed, which solves the secularity problem in a perturbative simulation and speeds up the numerical
computation by more than 10 times. It is found that the internal transport barrier emerges at the magnetic
axis due to inward propagated turbulence avalanche, and its outward expansion is the catastrophe of self-
organized structure induced by outward propagated avalanche.
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Self-organized states [1,2] have been found in many
nonlinear complex systems, such as the rainforest in
ecology [3], the earthquakes in geophysics [4], the laser
interaction with matters in optical engineering [5], the
nanotubes in electroanalytical chemistry [6], and the
turbulence in magnetic fusion plasmas [7]. By “self-
organized,” one means that the system naturally evolves
to the state, insensitive to the initial conditions [2]. The
International Thermonuclear Experimental Reactor (ITER)
[8], a tokamak fusion torus, will be a milestone in magnetic
fusion energy research [9,10], whose success crucially
depends on the core plasma confinement improvement,
designated by the formation of an internal transport barrier
(ITB) [11]. Various ITBs have been found in tokamaks,
such as JT-60U [12,13], TFTR [14,15], DIII-D [16–18],
JET [19,20], ASDEX-U [21], HL-2A [22], EAST [23,24],
and KSTAR [25] due to different turbulence-reduction
effects [26–28], such as the radial electric field (Er)
shearing [29], the negative or weak magnetic shear
[14,30–33], the external momentum injection [15,34],
and the effects of energetic ions [20,25]. The most
promising ITB for ITER [11] is the one emerging near
the magnetic axis and expanding radially outward in a weak
or positive magnetic shear heated plasma without momen-
tum injection [12,17,18], because the magnetic configura-
tion in this hybrid scenario [10,11] is relatively easier to
control, and the formation of the ITB seems to be non-
linearly self-organized [26,28]. Although the most prom-
ising ITB has been observed in many tokamaks
[12,17,20,22,23,25], its formation dynamics has not been
well understood.
Because of the complexity and nonlinearity, the non-

linear gyrokinetic (GK) simulation [20,25,35] has become
indispensable in turbulent transport research, which is
critical in understanding the ITB physics. Local simula-
tions [20,25] are not sufficient for investigating the non-
local effects, such as the turbulence avalanche [36,37] and

the ITB expansion. Therefore, it is of significant interest to
make a nonlinear GK global simulation to investigate the
formation dynamics of the most promising ITB. To solve
this challenging problem, we need a nonlinear GK
simulation including the magnetic axis where the ITB
emerges. Many efforts have been made on the nonlinear
GK global simulation, which has led to the discovery of
zonal flows (ZFs) [35,38–40] nonlinearly excited by the
ion-temperature-gradient (ITG) mode and reducing the
turbulence. The nonlinear GK global codes NLT [41],
GT5D [42], ORB5 [43], and GKNET [44] have been
developed to include the magnetic axis. However, it is still
difficult to simulate a realistic formation process of the
ITB. In a long-time simulation, the δf codes may involve
the secularity problem; the Eulerian codes may become
too slow due to the Courant-Friedrichs-Lewy (CFL) con-
straint, since the ZF may become strong. The first non-
linear GK global simulation of ITB formation was carried
out by using the semi-Lagrangian code GYSELA [37],
which did not include the magnetic axis and needed an
external injection of vorticity. More recently, a nonlinear
GK global simulation by the full-f Eulerian code found an
ion-ITB formed with a very localized external momentum
injection in a hybrid scenario configuration [44]. The
computation cost in this GK simulation is extremely high;
the time step used in a usual GK simulation is larger than
the period of ion gyro-motion, τgy; however, in Ref. [44],
it is reduced to ∼0.13τgy due to the CFL constraint; there-
fore the simulation domain is reduced to a quarter torous
there. More importantly, these simulated ITBs [37,44] are
not the most promising ITB, since they critically depend
on the Er shearing externally driven by either the vorticity
or momentum injection. Therefore, it is of significant
interest to further develop the method of long-time non-
linear GK global simulation to investigate the formation
dynamics of the most promising ITB (hereafter, it will be
simply noted as the ITB).
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Here we report the neighboring equilibrium update
(NEU) method, which solves the secularity problem for
a δf code, and significantly speeds up the present long-time
nonlinear GK simulation. With the NEU method, we have
successfully carried out for the first time a nonlinear
GK global simulation of the formation of the ITB, which
reveals that the expansion of the ITB is a catastrophe of the
self-organized structure induced by turbulence avalanche.
We simulate the ITG turbulence with adiabatic electrons

and kinetic ions satisfying the nonlinear GK equation [45],

∂tf þ fH; fg ¼ S þ CðfÞ; ð1Þ

with fðz; tÞ ¼ fðr; θ; vk; μ; α; tÞ the distribution function of
ion gyro-centers, f; g the Poisson bracket, S the ion heating
term, and CðfÞ the ion-ion collision term. The neoclassical
ion thermal conductivity given by the simulation here is
typically ∼0.2 m2=s, in good agreement with the theory
[46]. Here r and θ are minor radius and poloidal angle of the
torus, respectively; r ¼ rðψÞ, with ψ the poloidal magnetic
flux, α ¼ qθ − ζ, with q the safety factor, and ζ the toroidal
angle. vk and μ are parallel velocity and magnetic mo-
ment, respectively. The gyro-center Hamiltonian is
H ¼ H0 þ δH, with the equilibriumH0 ¼ miv2k=2þ μBþ
eihΦ0ig and the perturbation δH ¼ eihδΦig. Here ei andmi

are the ion charge and mass, respectively; B is the magnetic
field.Φ0 and δΦ are equilibrium and perturbed electrostatic
potential, respectively; h·ig is the gyro-average operator.
Equation (1) is used in the full-f method. In the δf method,
the full distribution function is separated into f ¼ f0 þ δf,
with the equilibrium distribution, f0, defined by

fH0; f0g ¼ 0: ð2Þ

Subtracting it from Eq. (1) yields the GK δf equation

∂tδf þ fH0; δfg ¼ −fδH; f0g − fδH; δfg þ S þ C: ð3Þ

In the usual δf method which solves Eq. (3), the time-
independent f0 is taken approximately as a local
Maxwellian, which is not exactly a constant of
motion [47,48].
The nonlinear trubulence (NLT) code, which has been

benchmarked with various codes [41,49,50], is used here to
solve Eq. (3); it evolves δf along the equilibrium orbit by
using the characteristic line method and takes account of
the perturbation effects by using the numerical Lie trans-
form [51,52]. To solve the GK quasineutrality equation for
the ITG fluctuations, we use the 8-point gyro-average
method [53], while for ZFs, we still use the long-wave-
length approximation [45].
The δf method has a higher numerical precision.

However, in a long-time simulation, δf may become large,
since successive nonlinear neighboring equilibria [54,55]

are formed. We propose the NEU method. When δf
becomes too large at a given instant t ¼ τ0, we update
the equilibrium (H0 and f0) of the system, namely, change
the partitions from H ¼ H0 þ δH and f ¼ f0 þ δf to

H ¼ H0 þ δH; f ¼ f0 þ δf ð4Þ

to keep δH and δf small.
Define the ensemble average of a scalar function gðz; tÞ

as genðZÞ ¼
R
τ0
τ0−τenðdt=τenÞ

H ðdα=2πÞgðZ; α; tÞ, with

ðZÞ ¼ ðr; θ; vk; μÞ, and τen ≈ 10R=cs; here mic2s ¼ Te;0,
with Te;0 the central electron temperature. The updated
equilibrium is given by

H0ðZÞ¼HenðZÞ; f0ðZÞ¼
I

dτ
τb
fen½Zðτ;Z;τ0Þ�; ð5Þ

with τb ¼
H
dτ; the integral is taken over by the poloidally

closed orbit determined by H0; Zðτ;Z; τ0Þ is the phase
space point at t ¼ τ on the orbit of the gyro-center launched
from Z at t ¼ τ0; Ż ¼ fZ; H0ðZÞg, Zðτ0;Z; τ0Þ ¼ Z. By
definition, f0½Zðτ;Z; τ0Þ� ¼ f0ðZÞ, f0 is a constant of
motion along the orbit. Since fH0; f0g ¼ Ż · ∂Zf0 repre-
sents the variation of f0 along the orbit given by H0, one
finds

fH0; f0g ¼ 0: ð6Þ

Subtracting Eq. (6) from Eq. (1), one finds

∂tδf þ fH0; δfg ¼ −fδH; f0g − fδH; δfg þ S þ C; ð7Þ

the updated δf equation to be solved to advance the system
after NEU. Equation (7) is formally the same as Eq. (3).
The canonical toroidal angular momentum Pα ¼

eiψðrÞ −mivkRBT=B (with R the major radius and BT

the toroidal magnetic field), and the energy W ¼ H0ðZÞ
are well-known constants of motion. Transforming
the variables from ðZÞ to ðPα;W; μ; θÞ, one finds
fenðZÞ ¼ FenðPα;W; μ; θÞ. Using dτ ¼ dθ=θ̇, one finds
Eq. (5) is reduced to F0ðPα;W; μÞ ¼
τ−1b

H
dθ=θ̇FenðPα;W; μ; θÞ, the definition used to diagnose

the evolution of F0 in ORB5 [55], where the δf equation
was not updated.
In a long-time simulation, we perform the NEU in NLT,

whenever the ion temperature is changed by 15% or the
CFL constraint, δg ≥ 0.8λmin=3, is touched; here δg is the
perturbed displacement computed by the numerical Lie
transform [52] and λmin is the minimum wavelength in the
system. By moving the toroidal symmetric Er to
the equilibrium, the NEU method significantly relaxes
the CFL constraint in the NLT code. With the local
Maxwellian distribution loaded as an initial equilibrium,
we can perform an NEU before starting the simulation.
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The main parameters here are chosen to model a DIII-D-
like deuterium plasma [17]. The major and minor radius of
the torus are R=a ¼ 1.67 m=0.67 m; BT ¼ 2.1 T. Initial
profiles of ion density ni, ion and electron temperature
Ti=Te, safety factor q, and heating power density, are
shown in Fig. 1. The ion heating power is P ¼ 2.5 MW. A
heat sink term is added near the edge (r > 0.9a is the buffer
region). The simulation domain is r=a∈ ½0; 1�, θ∈ ½−π; π�,
α∈ ½0; 2π�, vk=cs ∈ ½−6; 6�, μB0=T0;e ∈ ½0; 62= ffiffiffi

2
p �; here

B0 ¼ Bðr ¼ 0Þ. Grid numbers are Nr × Nθ × Nα × Nvk×
Nμ ¼ 222 × 16 × 190 × 96 × 16. μ is discretized accord-
ing to the Gauss-Legendre formula, while the other
variables are discretized uniformly. The time step here is
Δt ¼ 4τgy, which is 30 times larger than that used in
Ref. [44]; the NEU method significantly speeds up the
computation here. Note that we simulate the entire torus
here rather than a quarter torus [44,56]. The convergence
study has been carried out for this work; for example, when
changingΔt from 4τgy to 2τgy, the detail of the results, such
as the timing of the burst events in the nonlinear phase,
changes indeed; however, the conclusions made in this
work do not change qualitatively.
The general results are shown in Fig. 2 and

Supplementary Materials [57]. The time is normalized
here by 100R=cs ≈ 0.44 ms. Figure 2(a) shows that Ti at
t ¼ 10 × 0.44 ms agrees well with a standard δf simula-
tion without NEU; this verifies the NEU method. The
following consistencies with previous experimental and
theoretical results are demonstrated. (i) The ITB sponta-
neously emerges near the magnetic axis and radially
outward expands in a speed of ∼3 m=s in a heated plasma
with a weak or positive magnetic shear [12,17] [Figs. 2(a)–
2(c)]. (ii) The Er shear appears at the ITB location
[26,28,29] [Fig. 2(a)]. (iii) The intermittent burst events
on both sides of the ITB [27] are observed [Fig. 2(c)].
(iv) The successive collapse [37] and expansion [12,17] of
the ITB are observed [Figs. 2(b) and 2(c)]. (v) The power
threshold behavior [12,17,26,28] is suggested by a

simulation with a lower power (0.6 MW) which shows
no ITB expansion; this is consistent with the previous
simulation [44], which shows no ITB formed without
external momentum injection, with a heating power
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FIG. 1. Equilibrium and heating profiles.

FIG. 2. Formation of the ITB in ITG turbulence. (a) Profiles of
Ti and Er at different times. Open circles: Ti at t ¼ 10 found by a
simulation without NEU. (b) The temperature gradient, −T 0

iðr; tÞ.
The ITB emerges around r ≈ 0.16a at t ≤ 10 × 0.44 ms, and its
center expands to r ≈ 0.24a at t ≈ 50 × 0.44 ms. (c) The turbu-
lent thermal conductivity χiðr; tÞ, which also signifies the
turbulence intensity.
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4 MW and a central particle density 2.5 × 1020=m3; the
power threshold is proportional to the particle density [26].
These observations validate the simulation here.
The dynamics of ITB formation is shown in Fig. 3.

Figures 3(a)–3(c) indicate that the ITB emergence at r ¼
0.16a is induced by the radially inward propagated ava-
lanche; the direction of this propagation is consistent with
the fact that it is more stable near the magnetic axis where

the magnetic shear is weaker [30,33]. The S-curve shown in
Fig. 3(d) suggests a transition from a low-confinement (L)
state (high χi) to a high-confinement (H) state (low χi)
when the ITB emerges; this spontaneous formation process
of ITB is insensitive to initial conditions; therefore, the ITB
is a self-organized structure [2,7]. Figures 3(f)–3(h) dem-
onstrate that the typical ITB expansion (at r ¼ 0.28a) is
induced by the radially outward propagated avalanche,

FIG. 3. Dynamics of the ITB formation. (a)–(e) Emergence at r ¼ 0.16a. (f)–(j) Expansion at r ¼ 0.28a. ttrans: transition time
(different for the two columns). (a),(f) χi. The turbulence is reduced within the mesoscale region marked by the two horizontal lines. (b),
(g) Ion pressure gradient (p0

i). (c),(h) Er profile. (d),(i) The χi-gradient relation; open circles: L state; solid stars: H state; open squares:
transition time. (e),(j) Er and its contributions before (t ¼ t−) and after (tþ) transition; the effect of the toroidal rotation is negligible here.
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which starts from around r ¼ 0.20a [Fig. 3(f)] when the
gradient inside the ITB is raised by heating to a threshold
value [Fig. 3(g)]. Fourier analysis shows that the toroidal
mode number of the dominant mode of the burst in the
outer region is different from in the inner region, when the
avalanche propagates outward [Fig. 3(f)]. The S-curve for
r ¼ 0.20a [Fig. 3(i)] starts from a H state followed by a
transient L state but quickly returns to the H state after the
avalanche burst; this demonstrates that the ITB is a self-
organized structure that is robust [2] or resilient [7] to
perturbations.
The changes of Er structure before transition have been

clearly demonstrated in Figs. 3(c) and 3(h). Figures 3(e)
and 3(j) indicate that both pressure gradient change [40]
and poloidal flow change [39] contribute significantly to
the Er change. The ion poloidal flow uθ is calculated from
the ion radial force balance equation, Er þ uθBT−
uζBP − p0

i=ðnieiÞ ¼ 0, with the toroidal flow uζ, and Er

directly given by the simulation results; pi ¼ niTi; BP is
the poloidal magnetic field. Figures 3(e) and 3(j) [Figs. 3(a)
and 3(f)] show that the Er shear is significantly enhanced
(the turbulence is significantly reduced) across the tran-
sition within the mesoscale region labeled by the two
vertical (horizontal) black dashed lines.
Since the shearing Er structure or ZF is a stabilizing

(organizing) force while T 0
i is a driving (dissipating) force

of the system, the picture of the ITB expansion revealed
here can be summarized as follows. When the external
heating raises T 0

i above a threshold value inside the ITB, a
catastrophic burst is excited there; this burst propagates
radially outward in avalanche, and induces an outward
mesoscale expansion of the Er structure through non-
linearly excited ZFs; therefore, the structure of the
stabilizing force is expanded, and hence the ITB, a self-
organized structure, is expanded by the avalanche.
In summary, we have proposed the NEU method, which

avoids the secularity problem in the perturbative (δf)
computation, and significantly speeds up the computation
by more than 10 times in a long-time nonlinear GK global
simulation. Based on this critical progress, we have
successfully revealed for the first time the formation
dynamics of the ITB. We found that the emergence of
the ITB is due to the inward propagated avalanche; the ITB
is a self-organized structure and its outward expansion is
the catastrophe induced by the outward propagated
avalanche.
The results may also add insight into the physics of an

edge transport barrier in the H-mode plasmas [58]. Note
that the NEU repartitions the equilibrium and perturbation;
the equilibrium, in addition to the perturbation, is evolved
here by using the first-principle nonlinear GK simulation.
This is different from Ref. [59], which evolves the
equilibrium on the long-time scale by one-dimensional
transport modeling with the flux-gradient relations extrapo-
lated from the short-time GK simulation.
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