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We report an extensive experimental investigation on the transition from flat-band localization (FBL) to
Anderson localization (AL) in a one-dimensional synthetic lattice in the momentum dimension. By driving
multiple Bragg processes between designated momentum states, an effective one-dimensional Tasaki
lattice is implemented with highly tunable parameters, including nearest-neighbor and next-nearest-
neighbor coupling coefficients and onsite energy potentials. With that, a flat-band localization phase is
realized and demonstrated via the evolution dynamics of the particle population over different momentum
states. The localization effect is undermined when a moderate disorder is introduced to the onsite potential
and restored under a strong disorder. We find clear signatures of the FBL-AL transition in the density
profile evolution, the inverse participation ratio, and the von Neumann entropy, where good agreement is
obtained with theoretical predictions.
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Introduction.—The connection between disorder and
localization in periodic lattices is a fundamental problem
in many fields, such as condensed matter physics [1] and
statistic physics [2–4]. Intuitively, the presence of disorder
breaks translational symmetry and compromises the coher-
ence of particle hopping. As a result, a sufficiently strong
disorder would completely prohibit particle transport in
arbitrary dimensions and lead to a localized phase referred
to as Anderson localization (AL) [5]. Meanwhile, locali-
zation can also occur in a disorder-free system, where
perfect destructive interference of particle hopping is
induced by careful design of the lattice configuration to
create a flat band with localized single-particle eigenstates
[6,7]. This mechanism leads to a phenomenon called flat-
band localization (FBL) or compact localization. Both AL
and FBL can sustain a certain degree of interaction to enter
a many-body localization state [8–13], which features
nonergodic behaviors and breaks the eigenstate thermal-
ization hypothesis [14,15]. However, theoretical analysis
suggests that the many-body localization states that
emerged from FBL and AL are distinct phases with
different physical properties [16–18].
A system with FBL can be turned into an AL phase by

introducing sufficiently strong disorder. In one and two

dimensions, an FBL-AL phase transition is predicted in
noninteracting Fermi systems if the flat band is fully gapped
from neighboring dispersive bands, with a critical disorder
strength on the order of the energy gap [7,19]. On the other
hand, a metallic phase may even exist in higher dimensions
between the FBL and AL phases, resulting in a disorder-
induced insulator-metal transition known as the inverse
Anderson localization transition [20–22]. These theoretical
investigations suggest a rather counterintuitive phenomenon
that disorder can be detrimental to localization.
From an experimental perspective, flat-band systems

have been realized in various systems, including metama-
terials, cavity polaritons [23,24], photonic waveguides
[25–28], and ultracold atoms in optical lattices [29–32].
However, the attempt to observe the FBL-AL transition
requires precise control of the lattice potential at a single-
site level and the ability to measure time-dependent trans-
port behavior, which is absent in most solid-state systems.
Artificial lattices, such as photonic waveguides and syn-
thetic atomic lattices [32,33], allow for simulating flat-band
systems in a more controllable manner. For example, a
scheme has been recently proposed for photonic crystals,
where the quantum behavior of wave functions can be
simulated by classical light waves owing to the similarity
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between the electromagnetic wave equation and the
Schrödinger equation [21].
Here, we report an extensive experimental investigation

on the FBL-AL transition with a Bose-Einstein condensate
(BEC) of 87Rb atoms in a one-dimensional (1D) momen-
tum lattice, as shown in Fig. 1(a). Using different momen-
tum states to denote lattice sites, we tune the two- and
four-photon Bragg scattering lasers [34–38] to realize
precise control of the hopping rates between individual
sites and the position-dependent onsite potential. The time-
dependent probability distribution with a single-site reso-
lution can be measured via the time-of-flight technique. We
first realize a 1D Tasaki lattice [39] with 12 unit cells (25
lattice sites), and observe a nondiffusive behavior when the
system is initialized at an eigenstate of the flat band. Then
we introduce an effective disorder potential by changing
the detuning of Bragg processes to witness the FBL-AL
transition from the time evolution of particle distribution.
The transition is characterized by the “efficiency” param-
eter, the inverse participation ratio, and the von Neumann
entropy, all showing good agreement with numerical
simulations. Our work not only deepens the understanding
of the relationship between disorder and localization, which
has remained one of the central topics in the study of metal-
insulator transition for decades, but also shows the ability
of the momentum lattice as a versatile platform to study
transport properties in artificial geometries.
Tasaki lattice and experimental realization.—The 1D

Tasaki lattice, also called the sawtooth lattice, comprises
two types of sites, labeled A and B, as illustrated in
Fig. 1(b). Particles can hop between A and B sites if they
are nearest neighbors and from a B site to the two nearest B
sites. For a system with L unit cells, each containing an A
site and an B site, there are in total 2L − 1 tunneling terms
between A and B with coefficients u, and L − 1 terms
between B and B with hopping rate v. The Hamiltonian
reads

HTasaki ¼
X
i

�
uĉ†i;Aci;Bþuĉ†i;Aĉiþ1;BþH:c:

�

þ
X
i

�
vĉ†i;Bĉiþ1;BþH:c:

�
þ
X
i;s

Wi;sĉ
†
i;sĉi;s; ð1Þ

where ĉ†i;s and ĉi;s are the creation and annihilation
operators for particles on the s ¼ A, B site of the ith unit
cell, Wi;s is the onsite energy offset describing a disorder
potential, and H.c. stands for Hermitian conjugate. In the
absence of disorder Wi;s ¼ 0, the single particle dispersion
presents two bands

E� ¼ jvj cos k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvj2cos2kþ 2juj2ð1þ cos kÞ

q
: ð2Þ

When the tunneling coefficients satisfy r≡ juj=jvj ¼ ffiffiffi
2

p
,

the lower band is completely flat with E− ¼ −2jvj, as

shown in Fig. 1(c). The single particle eigenstates of the
flat band are jϕii ¼ ½− 1

2
ĉ†i−1;A þ ð ffiffiffi

2
p

=2Þĉ†i;B − 1
2
ĉ†i;AÞjvaci

with jvaci the vacuum state, which are completely localized
due to the destructive interference of hopping. The exist-
ence of disorder would inevitably spoil this destructive
interference by coupling the FBL state to other dispersive
Bloch waves. When strong enough disorderWi;s is present,
the single-particle states become the localized states asso-
ciated with the disorder potential, and the system enters the
AL phase.
To characterize the FBL-AL transition, a localiza-

tion length ξ can be defined from the asymptotic expo-
nential decay of a single-particle wave function [40]

ψ i;ðA;BÞ
j ∝ expð−i=ξÞ, which presents different scaling

behaviors for the FBL and AL phases [7,19]. In Fig. 2,
we show for example the localization length of the
eigenstate with E ¼ −2jvj in units of lattice constant,
where two different power-law behaviors ξðWÞ ∼Wγ can
be clearly observed. Here, W represents the dimensionless
disorder strength in units of jvj with Wi;s ¼ mi;sWjvj, and
mi;s is a random number uniformly distributed within
½−1; 1�. In the weak disorder limit, ξ is nearly a constant
with γ ¼ 0, which is determined by the nature of the
compact localized state. For strong disorder with W ≳ 2,
the exponent becomes γ ≈ −0.5 characterizing an AL
phase. The FBL-AL transition occurs when the disorder
strength approaches the band gap [41,42].
In our experiment, we implement the Hamiltonian Eq. (1)

in an optically trapped 87Rb BEC, which is driven by
counter-propagating lasers with wavelength λ ¼ 1064 nm

FIG. 1. Realization of 1D Tasaki lattice with onsite disorder in
momentum lattice. (a) A 1D momentum lattice realized using
Bragg processes (top) and visualized via time-of-flight imaging
(bottom). (b) A 1D Tasaki lattice is composed of two sublattices
with hopping integrals u and v. (c) The energy bands of 1D
Tasaki lattice with increasing ratios r≡ juj=jvj ¼ 0.75;

ffiffiffi
2

p
; 2.5

(from the middle to both sides). A fully gapped flat band is
realized with r ¼ ffiffiffi

2
p

≈ 1.4 (red lines).
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and wave number k ¼ 2π=λ. The laser along one direction
has a single frequency component, while the opposite beam
is engineered to contain multiple discrete frequency com-
ponents, matching the two-photon and four-photon Bragg
resonance conditions for states with linear momenta
pn ¼ 2nℏk. These momentum states form a 1D synthetic
lattice, where particles can transfer between different states
jni with momentum pn according to the time-dependent
Hamiltonian

HðtÞ ¼
X
n

h�
KðtÞĉ†nþ1ĉn þ H:c:

�þ Enĉ
†
nĉn

i
: ð3Þ

The tunneling coefficient reads

KðtÞ¼ℏ
X
j

ðKjuþKjv1 þKjv2Þ; Kjs ¼Ωjse−iωjst; ð4Þ

where Ωjs is the Rabi frequency with the jth frequency
component, and ωjs denotes the frequency difference
between the two lasers driving the jji ↔ jjþ 1i transition.
The term with s ¼ u represents the two-photon Bragg
process inducing nearest neighbor hopping, while the terms
with s ¼ v1 and v2 are the components of the four-photon
transitions between next-nearest-neighboring sites. Here,
En ¼ 4n2Er is the energy of the nth momentum state. More
details of the derivation of the effective Hamiltonian can be
found in the Ref. [41].
Flat-band localization.—To observe the phenomenon of

FBL, we first implement a Tasaki lattice in momentum
space and optimize the ratio parameter r to realize a flat
band. Here, we individually address and tune the transition
between an arbitrary pair of momentum states by Bragg
lasers. With such controllability, we use a total of 24
appropriate frequencies to generate tunneling between

states jni with momentum pn ¼ 2nℏk and its nearest
neighbors jn� 1i for n ¼ 0;�1;…;�11, and an addi-
tional 18 beams to create hopping between jmi and jm� 2i
for m ¼ 0;�2;…;�10. In that configuration, the states
with odd momentum index n are classified as the A sites,
while the ones with even n act as the B sites. We fix the
hopping rate between the B sites at jvj ≈ 2πℏ × 0.2 kHz
and tune the tunneling strength juj and its relative phase.
To demonstrate the localization effect, we study the time

evolution of an initial state jϕii. We start from a BEC in the
zero momentum state jn ¼ 0i with total number N, and turn
on the coupling to the j − 1i state with tunneling strength
2πℏ × 0.5 kHz and phase−0.4π, and to the j þ 1i state with
the same strength but an opposite phase 0.4π for a duration
about

ffiffiffi
2

p
=8 ms [41]. This process produces with very high

fidelity the state jϕ0i¼
�
−1

2
j−1iþð ffiffiffi

2
p

=2Þj0i− 1
2
jþ1i�,

which is an eigenstate of the lower flat band of the Tasaki
lattice for r ¼ ffiffiffi

2
p

. In the thermodynamic limit, such a state
would be completely localized at its original spots without
any diffusion because tunneling to other sites is coherently
destructive. In Figs. 3(a) and 3(b), we show the experimental
data and numerical simulations of the normalized occupation

FIG. 2. Localization length ξðWÞ (in units of lattice constant)
for the eigenstate of E ¼ −2jvj. The result is for a system with
size N ¼ 1001 and an average of 100 disorder configurations
jWi;sj < W. The power-law exponent γ (false color) changes from
0 for FBL to −0.5 for AL.

FIG. 3. (a) The particle populations (false color) of different
sites upon time evolution are measured for cases of r ¼ 0.75, 1.7,
and 2.5. (b) The same results obtained from numerical simulation
of the time-dependent Hamiltonian Eq. (3). Both panels are taken
with jvj ≈ 2πℏ × 0.2 kHz in a Tasaki lattice of 25 sites. (c) Ex-
perimental time evolution of the efficiency F for r ¼ 0.75, 1.0,
1.7, and 2.5 (circles with error bars). The red and blue solid
(dashed) lines represent the numerical simulation results of the
time-dependent Hamiltonian (effective Tasaki lattice) for r ¼ 1.7
and 2.5, respectively. (d) Time averaged efficiency hFiT as a
function of r. Experimental data (red diamonds with error bars
smaller than the size of symbols) are averaged in time over the
range 1.375ℏ=jvj to 2.125ℏ=jvj in a step of 0.125ℏ=jvj. The
results of numerical simulation based upon the time-dependent
Hamiltonian (solid) and effective Tasaki lattice (dashed) are
depicted for comparison.
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of different momentum states PnðtÞ ¼ hnjni=N over time
starting from jϕ0i. The results show an apparent localization
effect for r ≈ 1.7, where the significant population is kept
within the center threemomentumstates during the evolution.
This value is slightly different from the theoretical parameter
r ¼ ffiffiffi

2
p

, mainly due to the presence of interatomic interaction
as well as nonidealities [41,42].
To quantify the localization effect, we define the “effi-

ciency” F as described in Ref. [43], in terms of the
normalized number of atoms Pm

n of a given statem detected
at lattice site n

Fm ¼
�X

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm;Tasaki
n Pm;expt

n

q �
2

; ð5Þ

where the results for a Tasaki lattice Pm;Tasaki
n and for the

experimental system Pm;expt
n are both used. For an infinitely

long 1D Tasaki lattice with a perfect flat band, F should
remain unity, reflecting complete localization. However, a
numerical simulation of the time-dependent Hamiltonian
Eq. (3) of a finite size prepared in our experiment suggests
that F becomes lower than 1 and oscillates over time for
short time as shown in Fig. 3(c), and saturates to an
asymptotic trend for a sufficiently long time. That is, the
initial state undergoes inevitable diffusion for all realiza-
tions. For a typical choice of evolving time t ¼ 2.125ℏ=jvj
(∼1.7 ms), which is long enough so that the oscillation of
particle distributions is smeared out and the time depend-
ence of F shows a smooth trend, the time averaged
efficiency hFiT reaches its maximum of ∼0.85 at r ≈ 1.7
[gray line in Fig. 3(d)]. The experimental measurements
(red diamonds with error bars) reveal the expected behavior
by changing r and show good agreement with the numeri-
cal simulations, except for the region of small ratio where
the nonlinear effect of interatomic interaction and global
trapping potential can be significant.
Transition to Anderson localization.—Next, we intro-

duce a site-dependent potential Wi;s to investigate the
diffusion of particles from the disorder-free limit of FBL
to the AL regime with strong disorder. For this purpose, we
tune the frequency and power of the Bragg lasers to
produce a detuning to the transitions between different
momentum sites. By choosing a proper set of laser
parameters, such detuning can be described as the onsite
energy offset Wi;s as given in Eq. (1). To analyze the
disorder effect, we generate an ensemble of different
configurations fWi;sg ¼ fmi;sWg, where mi;s ∈ ½−1; 1�.
By fixing r at 1.7, we increase W from zero and measure
the efficiency F at t ¼ 2.125ℏ=jvj (∼1.7 ms).
We display in Fig. 4(a) a false-colored plot of hFi

obtained by simulation with varying r and W, where the
FBL phase (i) is separated from the AL phase (iii) by a
transition region (ii). In Fig. 4(b), we show the disorder
averaged efficiency hFi for 16 different choices of W
ranging from 0.01 to 200. For each data point, an average

over 50 sampling configurations is taken, and the con-
vergence of both the average and variance is confirmed by
numerical simulation and experimental data. In this plot,
three different regions can be identified. The region labeled
by (i) features a large hFi, which nearly remains constant at
approximately 0.75 forW ≲ 0.5. This observation indicates
that the mechanism of FBL, i.e., destructive interference of
hopping, still dominates and that the initial state is only
slightly modified upon evolution in the presence of weak
disorder. WhenW is increased above 0.5, hFi starts to drop
and reaches a minimum of ∼0.51 atW ≈ 3, beyond which it
is quickly restored. In this region [labeled by (ii)], disorder
compromises the destructive interference such that the final
state upon evolution is significantly modified from its
origin. However, a theoretical analysis of level statistics
confirms that the system is still in a localized phase with a
Poisson distribution [41]. As W is further increased over
∼10, the disorder is strong enough to dominate the back-
ground lattice structure. In this region denoted by (iii), the
system enters the AL phase, where particle transport is
prohibited. For even larger W > 20, the disorder potential
becomes comparable or even exceeds the recoil energy and

FIG. 4. (a) False-colored plot of the disorder averaged effi-
ciency hFi obtained from numerical simulation of the time-
dependent Hamiltonian Eq. (3) for t ¼ 2.125ℏ=jvj (∼1.7 ms). By
varying the disorder strength W and the hopping ratio r, two
localized regions (red) labeled by (i) and (iii) can be identified
and are separated by a crossover region labeled by (ii). (b) When
increasing W with a fixed r ≈ 1.7, the measured results of hFi
(red circle) agree well with numerical simulation (gray line), and
signature the transition from FBL (i) to AL (iii). All data are
averaged over 50 independent disorder configurations after
evolving for t ¼ 2.125ℏ=jvj. (c) The IPR I and (d) the von
Neumann entropy S of a given initial state as a function of W.
Symbols represent experimental data averaged over 50 indepen-
dent disorder configurations after evolving for t ¼ 2.125ℏ=jvj.
The results of numerical simulation based upon the time-
dependent Hamiltonian (solid) and effective Tasaki lattice
(dashed) are depicted for comparison. The error bars of exper-
imental results are all smaller than the size of the symbol in panels
(b)–(d).
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the frequency difference between different Bragg transi-
tions. In this case, multiple transition processes must be
considered and the effective momentum lattice model of
Eq. (1) is no longer valid. Nonetheless, the system remains
in the AL phase as witnessed in Figs. 4(b)–4(d), where the
experimental data are presented by a different type of
symbol.
To further characterize the FBL-AL transition, we

analyze two measures of localization, including the inverse
participation ratio (IPR) I and the von Neumann entropy S,
defined as [8]

I ¼
X
n

P2
n; ð6Þ

S ¼
X
n

½−Pnlog2ðPnÞ − ð1 − PnÞlog2ð1 − PnÞ�; ð7Þ

where the summation runs over all lattice sites. For a
perfect flat band, the IPR of a given single-particle
eigenstate jϕ0i takes the maximal value of I ¼ 3=8 and
does not change over time. In the presence of disorder, the
disorder average of IPR hIi becomes time-dependent and
is reduced from this theoretical limit in both numerical
simulation (gray solid line) and experimental measurement
(circles), as shown in Fig. 4(c). One can clearly identify two
plateaus of large IPR in the weak and strong disorder
regions, corresponding to the FBL and AL phases, respec-
tively. A transition region lies between the two localized
phases, where the IPR presents a dip to as low as I ∼ 0.15.
Similar behavior is observed in the results of von Neumann
entropy for a given single-particle state, as shown in
Fig. 4(d). A theoretical calculation suggests that the
FBL-AL transition is more evident in the averaged Ĩ
and S̃ over the entire single-particle spectrum [8,17,41].
Summary.—We implement a one-dimensional Tasaki

lattice in a momentum lattice of ultracold 87Rb atoms.
The experimental platform provides the ability to precisely
control the strength and phase of tunneling between sites,
as well as the onsite energy of individual sites. With that,
we obtain a flat band phase and observe the localization
effect of the initial state via time-of-flight imaging. We then
introduce an onsite disorder potential and witness a
transition from the FBL phase to the AL phase, which
are both insulating states but induced by different mech-
anisms. The FBL-AL transition is further identified by the
inverse participation ratio and the von Neumann entropy.
The method can be naturally applied to construct other one-
dimensional models with a composite basis, such as the
diamond chain model, the zigzag model, and the
Aharonov-Bohm caging model, where exotic topological
[44,45] and transport properties [22] may be present.
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