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The cross section of the 13Cðα; nÞ16O reaction is needed for nuclear astrophysics and applications to a
precision of 10% or better, yet inconsistencies among 50 years of experimental studies currently lead to an
uncertainty of ≈15%. Using a state-of-the-art neutron detection array, we have performed a high resolution
differential cross section study covering a broad energy range. These measurements result in a dramatic
improvement in the extrapolation of the cross section to stellar energies potentially reducing the uncertainty
to ≈5% and resolving long standing discrepancies in higher energy data.
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The 13Cðα; nÞ16O reaction, or its time reverse
16Oðn; αÞ13C, is important for a wide range of applications
in nuclear physics. In nuclear astrophysics, the low-energy
cross section determines the neutron production in a variety
of stellar environments and is critical for modeling the
chemical evolution of our Universe. In asymptotic giant
branch (AGB) stars, the mixing of hydrogen into the helium
burning shell triggers the 12Cðp; γÞ13NðβþνÞ13C sequence
producing 13C to feed the 13Cðα; nÞ16O reaction. The
strength of this neutron source depends on hydrodynamic
intershell mixing conditions, the so-called carbon pocket,
and the strength of the reaction. Thus, it determines the
neutron flux for the slow-neutron-capture or s process,
which is responsible for the synthesis of approximately half
the heavy, naturally occurring, elements [1]. It is also
necessary for modeling neutron production in AGB stars
by comparing the abundance distribution of s-process
elements [2]. At higher energies, it plays an important
role in determining the neutron flux for intermediate
neutron capture (i process) in carbon enhanced metal poor
stars [3], where the neutron production occurs in a deep,
convective, hot, environment in which 13N is mixed into the
hotter regions of the hydrogen burning shell before its
decay, and the subsequent 13Cðα; nÞ16O reaction occurs at
much higher temperatures [4,5].
In some large scale neutrino detector measurements,

such as period 1 of the Kamioka Liquid Scintillator
Antineutrino Detector (KamLAND), the 13Cðα; nÞ16O

reaction is a main background source, competing with
signals from geoneutrinos, in the determination of neutrino
mixing ν1 − ν2 [6–8]. The reaction is induced by α particles
released through the natural decay chains in impurities
in the liquid scintillator material. Thus, the background
depends on both actinide impurities and the neutron
branching in the deexcitation channel. There are two ways
the 13Cðα; nÞ16O reaction can mimic these interactions.
First, through the production of high energy neutrons from
the 13Cðα; n0Þ16O reaction that inelastically scatters on 12C
producing a prompt γ ray followed by a neutron capture.
Second, the 13Cðα; n1Þ16O reaction [9,10] produces an E0
decay, eþ =e− followed by neutron capture, which is
indistinguishable from inverse β decay. Therefore, exper-
imentally determining the partial cross section to each of
the individual final states is essential.
Additionally, neutron transport simulations play an

important role in the nuclear energy sector. They are based
on cross section evaluations like ENDF=B, where the
16Oðn; αÞ13C reaction is given high priority [11–13].
These simulations are necessary to estimate the flux of
neutrons traversing from reactor or other neutron environ-
ments, to determine the energy distribution, calculate
shielding and moderator requirements, and assess the
lifetime of reactor fuel. Monte Carlo simulations of neutron
transport are critical for studying the response of neutron
detectors employed in low-, intermediate-, and high-energy
physics as well as for estimating the activity induced in
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different detectors by intense neutron fields. The latter is an
important aspect for neutron dosimetry.
Past experimental studies have focused on reaction cross

section measurements via detection of thermalized neu-
trons using “4π” moderator counters [14–18]. This meas-
urement technique has the advantage of high detection
efficiency, and, in principle, insensitivity to the angular
distributions of the outgoing neutrons. However, it also has
its drawbacks. With no sensitivity to outgoing neutron
energy, backgrounds are more difficult to discriminate.
Simulations have shown that when the moderator size is too
small and the detector configuration is not optimized, the
efficiency can be highly dependant on neutron energy and
the neutron angular distribution [19]. The branching ratios
to different final states and angular distributions are
often unknown, and thus, the yields cannot be accurately
converted to cross sections [20,21]. For these reasons,
Harissopulos et al. [17] significantly underestimated their
uncertainties, causing large inconsistencies to develop
between the ENDF/B-VII.1 and ENDF/B-VIII.0 evalua-
tions [12,22].
In order to resolve these discrepancies, new measure-

ments were performed at the University of Notre Dame
Nuclear Science Laboratory using the 5 MV Stable ion
Accelerator for Nuclear Astrophysics [23]. Helium beams
were produced over a laboratory energy range from
Eα ¼ 0.8 to 6.5 MeV, with typical beam intensities of
≈10 eμA on target. The energy of the accelerator was
calibrated using resonances in the 13Cðα; nÞ16O reaction
that correspond to those observed in nþ 16O time-of-flight
measurements [24]. Targets were fabricated at the Institute
for Nuclear Research (ATOMKI) in Debrecen, Hungary.
Enriched (99%) 13C powder was evaporated onto a 0.5 mm
Ta backing, which also served as a beam stop, creating a
thin layered reference target of 10.3ð6Þ μg=cm2. The target
thickness was determined by measuring the energy loss
over the narrow resonance in the 13Cðα; nÞ16O reaction at
Eα ¼ 1.05 MeV. To mitigate deterioration from beam
heating, the target backing was water-cooled throughout
the experiment and the beam was rastered over the target
area. A liquid-nitrogen cooled and electrically isolated
copper pipe, biased to −300 V, was mounted in the target
chamber to serve as both as a cold trap and electron
suppressor.
The reference target was used to perform the majority of

the measurements, accumulating ≈0.8 C of charge, and no
deterioration was observed above the ≈5% level. A target
of half this thickness was used to scan over narrow
resonances in order to reduce the distortion from energy
averaging effects. After ≈0.46 C of accumulated charge,
the thin target was found to degrade by ≈15%. The targets
were similar to those used by Ciani et al. [25].
The measurement of differential cross sections was

accomplished using the Oak Ridge National Laboratory
Deuterated Spectroscopic Array (ODeSA) [26], used

previously in Refs. [9,27,28]. The array consisted of nine
deuterated scintillators mounted on a swing arm, which was
rotated to two different positions, with an offset of 7.5°, in
order to map 18 point angular distributions between 0° and
157.5°. The response matrix for the ODeSA detectors [26]
was measured at the Edwards Accelerator Laboratory at
Ohio University using time-of-flight and the well-known
9Beðd; nÞ10B thick-target neutron yield [29], which was
determined relative to measurements with a 235U fission
chamber [30]. In this way, direct current beams could
be used, optimizing run times by way of higher beam
intensities and simplified beam preparation. Neutron spec-
troscopy was accomplished by unfolding the light response
spectra using the calibrated detector response matrix and an
unfolding algorithm [31,32]. The data are provided in the
Supplemental Material [33] and are shown in Fig. 1.
Because of the positive Q value of the 13Cðα; n0Þ16O

(þ2.2 MeV) reaction, the above method was ideal, able to
achieve better spectral resolution than time-of-flight for the
target-to-detector distance of ≈63 cm [32]. The Ta backing
produced very little background with peaks from the
19Fðα; nÞ22Ne reaction observed only at beam energies in
excess of Eα ≈ 3 MeV. The large difference in Q value
(Q ¼ −1.95 MeV) ensured that the background was well
separated, clearly distinguishable with the ≈6% energy
resolution of the spectrum unfolding. However, this back-
ground source, and the unfolding resolution, prevented the
extraction of excited state cross sections from the data.
The most significant corrections to the present data came

from neutron scattering on the target backing, holder, and
other beam components very close to the target. These
corrections were simulated using MCNP6 [34], where a
detailed model of the setup was created. These corrections
were most significant at 0° and 90°, up to 30%, but were
less than 10%, otherwise. The corrections were verified
through comparison to previously measured neutron
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FIG. 1. The differential cross sections of the present work for
the 13Cðα; n0Þ16O reaction, where different angles of measure-
ment have been scaled by the indicated multiplicative factor.
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angular distributions on the thick target plateau of the Eα ¼
1.05 MeV resonance [35] and angular distributions of
7Liðp; nÞ7Be reaction [36,37]. These corrections proved
to be the most significant source of systematic uncertainty
as summarized in Table I.
The main framework used for interpreting 13Cþ α and

16Oþ n data over the resolved resonance region has been
the R matrix [39,40]. A comprehensive analysis has been
developed by the Los Alamos National Laboratory group
for the ENDF=B evaluations [11,12] using the energy
dependant analysis (EDA) code [41] and several other
R-matrix studies have also been published [16,42–44].
The R-matrix parameters from the EDA fit were transformed
into the Brune parametrization [45] and used as initial fit
parameters for the AZURE2 [46,47] analysis described here.
These parameter conversions have been tested previously in
Thompson et al. [48].
Up to ≈2.6 MeV, the EDA parameters give a good

reproduction of the present measurements owing to the
previous measurements of Walton et al. [35], but at higher
energies, the agreement worsens considerably because of
the much more limited amount of data [49–51]. The recent
measurements of Prusachenko et al. [52] provide 36
additional angular distributions, which have not yet been
incorporated into the ENDF=B evaluation. The level of
agreement between the present data and the EDA calculation
is demonstrated by a comparison of the 0° cross section
and two representative angular distributions in Fig. 2. The
discrepancies highlight the improvement the present data
can have on future evaluations.
In Febbraro et al. [9], it was confirmed that above

≈5 MeV the transitions to the excited states in 16O quickly
become significant contributors to the total reaction cross
section. The present data give an improved mapping
of the high energy 13Cðα; n0Þ16O cross section up to
6.5 MeV. A Legendre fit was used to integrate the differ-
ential data to compare with the reaction cross section data
of Brandenburg et al. [53] as shown in Fig. 3. The
Brandenburg et al. [53] measurements should be more
accurate than previous measurements as the efficiency of
the detector was designed to minimize its sensitivity to
neutron energy and angular distribution. Over the region
where only the ground state transition is energetically
accessible, the present data are ≈15% higher than those

of Brandenburg et al. [53], 10% higher than those of
Febbraro et al. [9], and ≈15% lower than those of
Prusachenko et al. [52], in good agreement when these
systematic uncertainties are considered. The data of
Prusachenko et al. [52] do show some differences in their
energy dependence, but this is likely due to energy
resolution effects resulting from their thicker target.
Recently, measurements have been extended to lower

energies [54,55], now directly overlapping a portion of the
Gamow window for helium burning temperatures. Even so,
an extrapolation of the cross section is still required to cover
the full range of astrophysical interest. Using the R matrix,
the uncertainty can be more fully characterized as
the framework provides the means for combining direct
measurements with asymptotic normalization coefficients

TABLE I. Summary of systematic uncertainty estimates for the
present measurements of the 13Cðα; nÞ16O cross section.

Systematic uncertainty contribution %

Charge collection 3
Stopping power [38] 5
Intrinsic efficiency 5
MCNP/Geometric efficiency 10

Total 13
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of Refs. [35,49–52] and the R-matrix cross section from the
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(ANC) from α-transfer measurements. This has become
particularly important given the advances in ANC deter-
minations [56–59] and the Trojan horse method [60].
To demonstrate the effect that this data has on the

extrapolation of the S factor, the uncertainty range esti-
mated in deBoer et al. [61] is indicated in Fig. 4.
This uncertainty comes from the systematic differences
in the absolute cross sections of Refs. [17,18] compared to
those of Refs. [14–16] and differences in extrapolation
techniques. The data of the present work and that of
Gao et al. [55] both strongly favor an absolute cross
section consistent with the measurements of Refs. [14–16].
Thus, the assertion is made that this source of systematic
uncertainty has been greatly reduced.
An R-matrix fit was performed that utilized the con-

sistent data of Refs. [15,16,54,55] up to Ec:m: ¼ 2.6 MeV
as well as the 16Oðn; totalÞ data of Refs. [24,62]. A
Bayesian uncertainty analysis was then performed using
the code BRICK [63]. In addition to providing more detailed
information about the parameter and cross section uncer-
tainties through the posterior probability distributions, this
methodology provided a natural way for the sub-Coulomb
ANC and its uncertainty for the near threshold state [59] to
be included directly as a prior. It should be noted that, as
found in Gao et al. [55], a consistent value for the ANC is
found even if a uniform prior is assumed. The systematic
uncertainties of each data set are also considered assuming
Gaussian priors and that no correlations exist. The resulting
best fit gives an ≈10% uncertainty over the Gamow
energy range. This analysis is similar to that performed
in Ciani et al. [54].
To demonstrate their affect, the new data were then

introduced into the fit. It should be noted that while the
angle integrated cross section, obtained through a Legendre

fit of the angular distributions has been shown for com-
parison in Fig. 4, the actual fit used the differential data
directly. This resulted in a further reduction in the S-factor
uncertainty to ≈5% over the Gamow energy range. The two
fits are largely consistent with one another over the Gamow
energy range, indicating the consistency of the present data
set with previous ones, but the reduced uncertainty dem-
onstrates the significant additional constraint that the
differential cross section data have on the R-matrix model.
The differential data are especially significant given the
presence of broad, overlapping, resonances that produce
additional angle dependent interference. This highlights the
very complementary nature of extremely low-energy angle-
integrated measurements, that require high detection effi-
ciency, with high resolution differential measurements, that
can only be made where the cross section is larger. It must
be emphasized, however, that this fit only represents the
potential effect of the present data and that a full evaluation
of all of the data must still be made to fully characterize the
uncertainties. Further details on the fit can be found in the
Supplemental Material [33].
The 13Cðα; nÞ16O reaction is one of the main sources of

neutrons for s-process nucleosynthesis, it is a significant
background in many kiloton-scale, low-event-rate, neutrino
and dark matter detectors, and its inverse 16Oðn; αÞ13C is
needed to model neutron induced α-particle production for
a variety of applications. The realization of additional
sources of uncertainty in past measurements has prompted
new experimental techniques. In this work, we report new
high-resolution measurements, in both energy and angle,
for the 13Cðα; n0Þ16O cross section, using the state-of-the-
art ODeSA array, resulting in 714 distinct angular distri-
butions that encompass the energy ranges applicable for
many applications. To demonstrate the effect of these new

FIG. 4. S factor for the 13Cðα; nÞ16O reaction at low energies. The shaded gray region indicates the uncertainty estimated by deBoer
et al. [61]. The red region represents the 16% and 84% confidence limits obtained from the BRICK analysis with the present data. The
percentages following each data set indicate the systematic uncertainty of that work. The data have been scaled according to the
normalization factors obtained from the fit as given in the Supplemental Material [33]. The arrow indicates the Gamow energy range for
T ¼ 0.2 GK.
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data on the extrapolation of the low-energy S factor,
R-matrix fits were combined with Bayesian uncertainty
estimation, which indicate the potential for a substantial
reduction in the uncertainty over the entire Gamow
energy range.
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the measurement of the 13Cðα; nÞ16O S-factor at negative

energies and its influence on the s-process, Astrophys. J.
777, 143 (2013).

[61] R. J. deBoer, C. R. Brune, M. Febrarro, J. Görres, I. J.
Thompson, and M.Wiescher, Sensitivity of the 13Cðα; nÞ16O
S factor to the uncertainty in the level parameters
of the near-threshold state, Phys. Rev. C 101, 045802
(2020).

[62] J. L. Fowler, C. H. Johnson, and R. M. Feezel, Level
structure of 17O from neutron total cross sections, Phys.
Rev. C 8, 545 (1973).

[63] D. Odell, C. R. Brune, D. R. Phillips, R. J. deBoer, and S. N.
Paneru, Performing Bayesian analyses with AZURE2 using
BRICK: An application to the 7Be system, Front. Phys. 10,
888476 (2022).

PHYSICAL REVIEW LETTERS 132, 062702 (2024)

062702-7

https://doi.org/10.1088/0004-637X/756/2/193
https://doi.org/10.1103/PhysRevC.91.048801
https://doi.org/10.1088/0004-637X/777/2/143
https://doi.org/10.1088/0004-637X/777/2/143
https://doi.org/10.1103/PhysRevC.101.045802
https://doi.org/10.1103/PhysRevC.101.045802
https://doi.org/10.1103/PhysRevC.8.545
https://doi.org/10.1103/PhysRevC.8.545
https://doi.org/10.3389/fphy.2022.888476
https://doi.org/10.3389/fphy.2022.888476

