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We present a parameter-free ab initio calculation of the α-particle monopole transition form factor in the
framework of nuclear lattice effective field theory. We use a minimal nuclear interaction that was previously
used to reproduce the ground state properties of light nuclei, medium-mass nuclei, and neutron matter
simultaneously with no more than a few percent error in the energies and charge radii. The results for the
monopole transition form factor are in good agreement with recent precision data from Mainz.
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Introduction.—The 4He nucleus, the α particle, is con-
sidered to be a benchmark nucleus for our understanding
of the nuclear forces and the few-body methods to solve
the nuclear A-body problem [1]. The attractive nucleon-
nucleon interaction makes this highly symmetric four-
nucleon system enormously stable. Furthermore, its first
excited state has the same quantum numbers as the ground
state, JP ¼ 0þ with JðPÞ the spin (parity), but is located
about 20 MeVabove the ground state. This large energy of
the first quantum excitation makes the system difficult to
perturb. This isoscalar monopole resonance of the 4He
nucleus presents a challenge to our understanding of
nuclear few-body systems and the underlying nuclear
forces [2]. Within pionless effective field theory, the ground
state and the first excited state of the alpha particle could
already be reproduced in Ref. [3], although with some
uncertainty in the position of the first excited state to the
proton-triton threshold. The recent precision measurement
of the corresponding transition form factor of the first
excited state to the ground state at the Mainz Microtrom
MAMI [4] compared with ab initio calculations based on
the Lorentz-integral transformation method [5] using phe-
nomenological potentials as well as potentials based on
chiral effective field theory, e.g. [6–10], revealed sizable
discrepancies as shown in Fig. 3 of Ref. [4].
These new results have spurred a number of theoretical

investigations, stressing especially the role of the con-
tinuum when including the resonant state which is located
close to the two-body breakup threshold [11,12]. In
particular, Ref. [12] showed that employing an explicit
coupled-channel representation of the no-core Gamow

shell model with the 3Hþ p, 3Heþ n, and 2Hþ 2H reaction
channels allows to reproduce the Mainz data. In that paper,
the effects of three-nucleon forces were neglected. We
remark that the Mainz data are also reproduced by the
pioneering work of Ref. [13], which also pointed out the
importance of the loosely bound 3N þ N system, where N
denotes a nucleon. However, as noted in Ref. [4], that
calculation does not reproduce the low-energy data, more
precisely, the two first parameters in the low-momentum
expansion of the transition form factor. It was also pointed
out that the shape of the transition density obtained from
the data in Ref. [4] is significantly different from that
obtained theoretically in the literature [14].
Here, we will use the framework of nuclear lattice

effective field theory (NLEFT) to present an ab initio
solution to the problem [15,16]. In particular, we want to
address the issue whether one possibly misses parts of the
nuclear force which, given a simple spin-0 and isospin-0
nucleus like 4He, would be rather striking. We make use of
a so-called minimal nuclear interaction, that has been
successfully used to describe the gross properties of light
and medium-mass nuclei and the equation of state of
neutron matter to a few percent accuracy [17]. It was used
in nuclear thermodynamics calculations [18] and ab initio
studies of clusters in hot dilute matter using the method of
light-cluster distillation [19]. A similar action was also
successfully applied to investigate the emergent geo-
metry and intrinsic cluster structure of the low-lying states
of 12C [20]. In particular, the transition form factor from the
Hoyle state to the ground state measured at Darmstadt [21]
could be excellently reproduced without any parameter
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adjustment. In this context, we mention the work of
Ref. [3], which stated that pairs of a deep ground state
and a shallow excited state with the same quantum numbers
as in 4He also occur in larger nuclei like 12C and 16O.
Consequently, it is worth mentioning that within NLEFT,
the first ab initio calculation of the Hoyle state in 12C was
performed [22], which, together with the ground state, is
arguably the most known of such pairs. Taking these
achievements into account, we believe that the NLEFT
framework is well suited to address the issue of the α-
particle transition form factor.
Formalism.—In Ref. [17] a minimal nuclear interaction

was constructed that reproduces the ground state properties
of light nuclei, medium-mass nuclei, and neutron matter
simultaneously with no more than a few percent error in the
energies and charge radii. It is given by the SU(4)-invariant
leading-order effective field theory without pions, formu-
lated on a periodic cubic box of L3. The Hamiltonian reads

HSUð4Þ ¼ Hfree þ
1

2!
C2

X

n

ρ̃ðnÞ2 þ 1

3!
C3

X

n

ρ̃ðnÞ3; ð1Þ

where n ¼ ðnx;ny; nzÞ are the lattice coordinates, Hfree is
the free nucleon Hamiltonian with nucleon mass m ¼
938.9 MeV. The lattice spacing is a ¼ 1.32 fm, which
corresponds to a momentum cutoff Λ ¼ π=a ≃ 471 MeV,
which is also the optimal resolution scale to unravel the
hidden spin-isospin symmetry of QCD in the limit of a
large number of colors [23]. The density operator ρ̃ðnÞ is
defined in the same manner as introduced in Ref. [24],

ρ̃ðnÞ ¼
X

i

ã†i ðnÞãiðnÞ þ sL
X

jn0−nj¼1

X

i

ã†i ðn0Þãiðn0Þ; ð2Þ

where i is the joint spin-isospin index, sL is the local
smearing parameter, and the nonlocally smeared annihila-
tion and creation operators with parameter sNL are
defined as

ãiðnÞ ¼ aiðnÞ þ sNL

X

jn0−nj¼1

aiðn0Þ: ð3Þ

The summation over the spin and isospin implies that the
interaction is SU(4) invariant. The parameter sL controls
the strength of the local part of the interaction, while sNL
controls the strength of the nonlocal part of the interaction.
The parameters C2 and C3 give the overall strength of the
two-body and three-body interactions, respectively. For a
given value of sNL, C2, C3, and sL are determined by fitting
to A ≤ 3 data. Then, the optimal strength and range of the
local and nonlocal parts of the interactions are defined by
parametrizing the nuclear binding energies with nuclei with
A ≥ 16 with the Bethe-Weizsäcker mass formula. Note that
the local part the interactions is an important factor in
nuclear binding, especially for the α-α interaction [25].

These parameters have been determined in Ref. [17] as
C2 ¼ −3.41 × 10−7 MeV−2, C3 ¼ −1.4 × 10−14 MeV−5,
sNL ¼ 0.5, and sL ¼ 0.061, and they will be used through-
out this work. The effects from the Coulomb interaction are
included in perturbation theory. For details, see Ref. [17].
The transition form factor FðqÞ of the monopole

transition is related to the transition density ρtrðrÞ by

FðqÞ ¼ 4π

Z

Z
∞

0

ρtrðrÞj0ðqrÞr2dr

¼ 1

Z

X∞

λ¼1

ð−1Þλ
ð2λþ 1Þ! q

2λhr2λitr; ð4Þ

with Z the charge of the nucleus under consideration. Here,
Z ¼ 2, and ρtrðrÞ ¼ h0þ1 jρ̂ðr⃗Þj0þ2 i is the matrix element of
the charge density operator ρ̂ðr⃗Þ between the ground state
0þ1 and the first excited 0þ2 state. This definition differs from
the one used in Ref. [4] by a factor of Z=

ffiffiffiffiffiffi
4π

p
. It is also

interesting to consider the low-q expansion of the transition
form factor. We use the definition of Ref. [4],

ZjFðq2Þj
q2

¼ 1

6
hr2itr

�
1 −

q2

20
R2

tr þOðq4Þ
�
; ð5Þ

with R2
tr ¼ hr4itr=hr2itr. The corresponding parameters

were extracted in Ref. [4] as hr2itr ¼ 1.53� 0.05 fm2

and Rtr ¼ 4.56� 0.15 fm.
Results and discussion.—The first excited state of 4He is

a resonance that sits just above the 3Hþ p threshold. In
order to study this continuum state, we perform calcula-
tions using three different cubic periodic boxes with
lengths L ¼ 10, 11, 12 in lattice units, corresponding to
L ¼ 13.2 fm, 14.5 fm, 15.7 fm. We then compare results
for the different box sizes in order to quantify the residual
uncertainties in the resonance energy and wave function
due to the finite volume and decay width. The lattice
calculations performed in this work follow the same
methods as presented in Ref. [20] for the low-lying states
of 12C. We use the Euclidean time projection operator
expð−HtÞ to prepare the low-lying states of 4He, starting
from some set of initial states with the desired quantum
numbers. The operator expð−HtÞ is implemented using
auxiliary-field Monte Carlo simulations with time step size
at ¼ ð1000 MeVÞ−1 ¼ 0.197 fm−1. The total number of
time steps is denoted Lt, and so t ¼ Ltat. While we do not
compute the decay width of the 0þ2 state in this work, new
computational algorithms for computing widths of reso-
nances from finite-volume lattice Monte Carlo simulations
are currently under development.
We perform coupled channel calculations using three

different initial states composed of shell-model wave
functions. The first channel contains four particles in the
1s1=2 state with oscillator frequency ℏω ¼ 20 MeV. The
second channel has all three particles for 3H in the 1s1=2
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state and an excited proton in the 2s1=2 state. The third
channel has one neutron in the 2s1=2 state and the remaining
nucleons in the 1s1=2 state. In these channels, we use ℏω ¼
6 MeV for the initial state of the excited particle and ℏω ¼
14 MeV for the initial state of the 3N system. The three-
channel calculation accelerates the exponential conver-
gence of the two lowest lying 0þ states in the limit of
infinite Euclidean time, Lt → ∞. In fact, the values of ℏω
in the second and third channel were tuned to optimize this
convergence, however, the final results do not depend
on these particular choices, see Ref. [26] for details. The
corresponding ground and first excited state energies
are collected in Table I. These compare well with the
experimental values of Eð0þ1 Þ ¼ −28.30 MeV and
Eð0þ2 Þ ¼ −8.09 MeV. The ground state energies of the
3N systems using an exact calculation at L ¼ 12 are
Eð3HÞ ¼ −8.36 MeV and Eð3HeÞ ¼ −7.65 MeV, which
compare well with the experimental values of −8.48 and
−7.72 MeV, respectively. We note some difference to the
energies given in Ref. [17], which can be traced back to
the use of larger volumes here. However, for the cases of
L ¼ 8, 9, 10, our results align with those presented in
Ref. [17], albeit with slightly enlarged uncertainties. We
have performed calculations with the Coulomb interaction
treated nonperturbatively, the resulting energy differences
are below 1 per mille, see Ref. [26]. For L ¼ 12, we find
ΔE ¼ Eð0þ2 Þ − Eð3HÞ ¼ 0.40ð9Þ MeV, consistent with the
main finding of Ref. [12]. We note that a recent paper finds
that Eð0þ2 Þ and Eð3HÞ are much closer together [27], in
contrast with experimental observations. The results for
L ¼ 10 and L ¼ 11 give very similar results for ΔE.
We also find only small differences in the transition form
factor results for L ¼ 10, 11, 12. In the following we
represent results for L ¼ 12, corresponding to a box
volume of V ¼ ð15.7 fmÞ3. Note further that when switch-
ing off the 3NF, the value of ΔE and the transition form
factor increase, entirely consistent with the findings of
Ref. [12], see Ref. [26] for details.
Since we are using a short-ranged SU(4) interaction, we

can resort to the Efimov analysis of Refs. [28,29] to give an
additional argument in favor of explaining why the 0þ2 state
can be accurately predicted by NLEFT using a minimal

nuclear interaction. We employ the universal Efimov
tetramer relation between the second state in 4He and the
triton energy, Eð0þ2 Þ ¼ 1.01 × Eð3HÞ. In the absence of the
Coulomb interaction, the 0þ2 state should be 0.01 × 8.48 ¼
0.084 MeV below the triton threshold. The Coulomb
energy has no effect on the triton. Adding the Coulomb
energy for 0þ2 from our lattice calculations with L ¼ 12, we
get 0.46ð2Þ − 0.08 ¼ 0.38ð2Þ MeV, which is very close to
the observed value of 0.40 MeV.
Next, we turn to the analysis of the transition form

factor, denoted as FðqÞ. In the framework of NLEFT,
observables such as nucleon density distributions, charge
radii, and form factors can be computed using the pinhole
algorithm [24], which performs a Monte Carlo sampling
of the A-body density of the nucleus in position space.
Furthermore, the pinhole algorithm can be combined
with the first order perturbation theory to compute the
corrections to these observables [17]. In this work, we
compute the transition form factor FðqÞ using the pinhole
algorithm while the Coulomb interaction is treated using
perturbation theory. Further details and additional calcu-
lations extending this work will be presented in Ref. [30].
First, we consider the SU(4)-symmetric interactions with-
out Coulomb. The resulting form factor is depicted by the
blue dashed line in Fig. 1. It somewhat overshoots the data,
although the error band associated with stochastic errors
and the large Lt extrapolation almost encompasses the data.
Including the Coulomb interaction leads to an overall
reduction of the transition form factor as shown by the
red solid line in Fig. 1. Overall, we achieve a good
reproduction of the data and the uncertainty band is also
somewhat reduced. This is due to the fact that inclusion of

TABLE I. Energy of the 4He ground state ð0þ1 Þ and the first
excited state ð0þ2 Þ for different box sizes L. Here, ΔE ¼ Eð0þ2 Þ −
Eð3HÞ for the same box length L. The error bars include
stochastic errors and uncertainties in the Euclidean time extrapo-
lation.

L [fm] Eð0þ1 Þ [MeV] Eð0þ2 Þ [MeV] ΔE [MeV]

13.2 −28.32ð3Þ −8.37ð14Þ 0.28(14)
14.5 −28.30ð3Þ −8.02ð14Þ 0.42(14)
15.7 −28.30ð3Þ −7.96ð9Þ 0.40(9)

FIG. 1. Calculated monopole form factor of the 0þ2 → 0þ1
transition in 4He compared to the recent data from Mainz [4]
(green squares) and the older data from Refs. [31–33] (gray
symbols). Blue dashed line: SU(4) symmetric strong interaction
with all parameters determined in Ref. [17]. Red solid line:
adding the Coulomb interaction perturbatively. The uncertainty
bands in the lattice results include stochastic errors and uncer-
tainties in the Euclidean time extrapolation.
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the Coulomb interaction leads to smaller fluctuations in
the Monte Carlo data when extrapolating to large Lt.
Consequently, we find that the nuclear interaction defined
in Ref. [17], which has already been shown to reproduce
the essential elements of nuclear binding, also leads to a
good description of the α-particle transition 0þ2 → 0þ1 form
factor without adjusting any parameters. Note that we have
also analyzed the many-body uncertainty underlying our
minimal interaction, as detailed in [26]. For A ≤ 4, this
error is much smaller than the statistical errors from the MC
simulation and the Lt extrapolation.
The transition density ρtrðrÞ underlying the form factor is

displayed in Fig. 2, for the SU(4) interaction and the
inclusion of the Coulomb interaction. The corresponding
curves are very similar to the results of Ref. [14], though we
find a less pronounced central depletion when the Coulomb
force is included. Note, however, that the definition used
there is based on averaging over all four nucleons, while
our definition is the charge (proton) density. We account for
the charge radius of the proton, rp ¼ 0.84 fm [34], while in
Ref. [14] a more phenomenological proton size factor
is used.
Now, we consider the low-momentum expansion as

given in Eq. (5). The resulting curves for the SU(4) and
SU(4) plus Coulomb interactions are shown in Fig. 3. Our
results are in good agreement with the results of Ref. [4],
which is shown by the gray band. We note again that
the error band of the NLEFT calculation is reduced when
the Coulomb interaction is included. The corresponding
moments of the low-q expansion are hr2itr ¼ 1.48ð1Þ fm2

andRtr ¼ 3.61ð3Þ fm for the SU(4) interaction fitted in the
range q2 ¼ 0.09–0.49 fm−2, and hr2itr ¼ 1.49ð1Þ fm2 and
Rtr ¼ 4.00ð4Þ fm for the SU(4) plus Coulomb interaction,
fitted in the range q2 ¼ 0.04–0.25 fm−2, as the signals are

less noisy at low q2 when the Coulomb interaction is
included.
Summary and discussion.—In this Letter, we have used a

minimal nuclear interaction that allows us to describe the
gross features of nuclei and nuclear matter with no more
than a few percent error to postdict the α particle transition
form factor from the first excited to the ground state. This
interaction accounts for SU(4) symmetric two- and three-
body terms as well as the Coulomb interaction with only
four parameters that previously had been determined in
Ref. [17]. First, we reproduce the energies of the ground
state and the first excited state of 4He. This is a known
prerequisite to properly describe the form factor due to
the closeness of the first excited state to the 3Hþ p thresh-
old [12,13]. Having met that prerequisite, we find that the
description of the transition form factor and its low-energy
expansion is quite satisfactory. The nuclear forces relevant
to this system are under good control, and we do not find
the puzzle mentioned in Ref. [4]. We were able to
accurately reproduce the position of the energy 0þ2 relative
to 3H with a simple interaction and no parameter tuning.
This strongly suggests a link between the tuning of the α-α
interaction already performed in Ref. [17] and the required
tuning of the p-3H interaction to get the correct energy of
0þ2 relative to 3H. In the future, calculations of the mono-
pole transition form factor can be made more systematic
and accurate by using high-fidelity chiral interactions and
the machinery of wave function matching [35].
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