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In the infrared limit, a nearly anti–de Sitter spacetime in two dimensions (AdS2) perturbed by a weak
double trace deformation and a two-site (q > 2)-body Sachdev-Ye-Kitaev (SYK) model with N Majoranas
and a weak 2r-body intersite coupling share the same near-conformal dynamics described by a traversable
wormhole. We exploit this relation to propose a symmetry classification of traversable wormholes
depending on N, q, and r, with q > 2r, and confirm it by a level statistics analysis using exact
diagonalization techniques. Intriguingly, a time-reversed state never results in a new state, so only six
universality classes occur—A, AI, BDI, CI, C, and D—and different symmetry sectors of the model may
belong to distinct universality classes.
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A generic many-body quantum chaotic system that does
not suffer from localization [1,2] eventually reaches an
ergodic state governed by the symmetries of the system,
rather than by the microscopic details of its Hamiltonian.
Since this ergodic state only depends on global symmetries,
it is possible to classify the dynamics by these symmetries.
The study of level statistics is a powerful tool for establish-
ing this classification because the level statistics of quan-
tum chaotic systems [3,4] agree with the predictions of
random matrix theory (RMT) [5–11]. Based on the theory
of symmetric spaces, it was concluded that, after taking
care of unitary symmetries, only ten universality classes
exist, the so-called tenfold way of RMT [12]. The sym-
metry classification was later extended to non-Hermitian
systems, where 38 universality classes exist [13–18].
The ten universality classes ofHermitian quantumchaotic

systems have already been identified. Three classes related
to the presence of time-reversal symmetry (TRS) (an
antiunitary operator that commutes with the Hamiltonian)
were reported in early studies in nuclear physics [5,6] and
single-particle quantum chaotic systems [3,19], pertaining
to systems with time-reversal invariance (class AI), broken
time-reversal invariance (class A), and time-reversal invari-
ance with broken rotational invariance and half-integer spin

(class AII). Ensembles of antisymmetric [20] and anti-self-
dual [21] Hermitian random matrices (classes D and C,
respectively) were also discovered early on. Later, studies of
the spectral properties of the QCD Dirac operator [22,23]
revealed the existence of three more universality classes
related to chiral symmetries represented by a unitary
operator that anticommutes with the Hamiltonian (classes
AIII, BDI, andCII). Shortly afterward, the classificationwas
completed by adding chiral matrices with symmetric and
antisymmetric off-diagonal blocks (classes CI and DIII,
respectively) [12]. Physically, these classes are realized in
superconducting systems with particle-hole symmetry
(PHS) (an antiunitary operator that anticommutes with
the Hamiltonian).
A related question is how many of the universality

classes can be identified in more specific Hamiltonians
describing a certain phenomenon. For instance, a full
classificatory scheme was worked out for topological
insulators in Ref. [24] and for systems at the Anderson
transition [1] in Refs. [25–28]. More recently, the
Sachdev-Ye-Kitaev (SYK) model [29–39] has been clas-
sified [40–49] in terms of RMT, thus providing a
symmetry classification of quantum black holes in two-
dimensional nearly anti-de Sitter (AdS2) backgrounds. The
relation between quantum gravity and the SYK model
[37,39,50–52] has been extended to traversable [53],
Euclidean [53,54], and Keldysh [55] wormholes. A study
of level statistics [56] revealed that traversable worm-
holes [53] belong to the universality class of systems with
TRS (class AI). A natural question to ask is whether this

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 132, 061603 (2024)

0031-9007=24=132(6)=061603(7) 061603-1 Published by the American Physical Society

https://orcid.org/0000-0002-7359-647X
https://orcid.org/0000-0002-5496-9998
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.061603&domain=pdf&date_stamp=2024-02-08
https://doi.org/10.1103/PhysRevLett.132.061603
https://doi.org/10.1103/PhysRevLett.132.061603
https://doi.org/10.1103/PhysRevLett.132.061603
https://doi.org/10.1103/PhysRevLett.132.061603
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


symmetry is a necessary condition for the existence of
traversable wormholes.
The main goal of this Letter is to answer this question

by providing an explicit symmetry classification of
SYK configurations whose gravity dual is a nearly AdS2
traversable wormhole that encompasses six universality
classes. For that purpose, we introduce a two-site, left (L)
and right (R), Hermitian SYK Hamiltonian H ¼ HLþ
αð−1Þq=2HR þ λHI [53,57–60] with left-right asymmetry
parameter α and coupling constant λ. The two single-site
q-body SYK Hamiltonians HL;R of N Majorana fermions
and the 2r-bodyHamiltonianHI coupling them are given by

HL;R ¼ iq=2
XN

i1<���<iq
Ji1���iqψ

L;R
i1

� � �ψL;R
iq

; ð1Þ

HI ¼ ir
N1−r

r

�XN

i¼1

ψL
i ψ

R
i

�r

; ð2Þ

where the couplings Ji1���iq are Gaussian random variables

with zero mean and variance σ2 ¼ 2q−1ðq − 1Þ!=ðqNq−1Þ.
The Majorana fermions satisfy the commutation relation
fψA

i ;ψ
B
j g ¼ δABδij (i; j ¼ 1;…; N and A;B ¼ L, R). The

parameters N and q are taken to be even (see the
Supplemental Material [61] for odd N).
Symmetry classification.—The class of H is determined

by its behavior under antiunitary symmetries: (1) TRS:
THT−1 ¼ þH, TiT−1 ¼ −i, T2 ¼ �1; (2) PHS:
CHC−1 ¼ −H, CiC−1 ¼ −i, C2 ¼ �1. Any antiunitary
symmetry A can be decomposed as A ¼ UK, with U
unitary and K complex conjugation, and we choose a
basis such that

KψL
i K

−1 ¼ ψL
i ; KψR

i K
−1 ¼ −ψR

i : ð3Þ

We define the unitary left and right parities,

SL ¼ ð2iÞN=2
YN

i¼1

ψL
i ; SR ¼ ð2iÞN=2

YN

i¼1

ψR
i ; ð4Þ

the total parity, S ¼ SLSR, and the (exponential of the) spin
operator,

Q¼ exp

�
−
π

4

XN

i¼1

ψL
i ψ

R
i

�
¼2−N=2
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i¼1

�
1−2ψL

i ψ
R
i

�
: ð5Þ

They square to S2L ¼ S2R ¼ S2 ¼ þ1 and Q2 ¼ S. Their
action on the Majorana fermions is given by (recall that,
throughout the main text, N is even)

SL;Rψ
L;R
i S−1L;R ¼ −ψL;R

i ; SL;Rψ
R;L
i S−1L;R ¼ ψR;L

i ;

QψR
i Q

−1 ¼ −ψL
i ; QψL

i Q
−1 ¼ ψR

i ; ð6Þ

i.e., the parity operators act inside each site, flipping the
sign of the respective Majoranas, while, up to a sign, the
spin operator exchanges the two species. Other operations
are obtained by compositions, e.g., the total parity S
reverses the signs of the Majoranas in both sites simulta-
neously. Using Eqs. (3) to (6), the transformation properties
of H0 ≡HL þ αð−1Þq=2HR and HI under the unitary and
antiunitary operators are

SL;RH0S−1L;R ¼ H0; SL;RHIS−1L;R ¼ ð−1ÞrHI;

QH0Q−1 ¼ ð−1Þq=2H0; QHIQ−1 ¼ HI;

KH0K−1 ¼ ð−1Þq=2H0; KHIK−1 ¼ HI: ð7Þ

Note the transformation of H0 under Q holds only for
α ¼ 1. If α ≠ 1, the left-right spin operator Q is not a
symmetry of H.
The symmetry classification of H, which follows from

Eq. (7), depends on N mod 4 [65] (in contrast to the one-
site classification which depends on N mod 8 [40–42,46]),
the parity of q=2 and r, and whether there is left-right
symmetry (α ¼ 1) or not (α ≠ 1), see Tables I–IV. Below
we provide a brief justification of this classification, see the
Supplemental Material [61] for a detailed derivation.
First, for the action of an antiunitary symmetry to be

well-defined, all commuting unitary symmetries (con-
served quantities) must be resolved. That is, in the common

TABLE I. Symmetry classification of the two-site SYK Hamiltonian for even q=2 and even r. Each line corresponds to a block of the
Hamiltonian, labeled by the eigenvalues of the conserved quantities SL;R andQ. For each of the six blocks, we give its dimension and its
symmetry class both for the left-right symmetric (α ¼ 1) and asymmetric (α ≠ 1) cases and for N mod 4 ¼ 0, 2.

N mod 4 ¼ 0 N mod 4 ¼ 2

SL SR Q Dimension α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 þ1
þ1 ð2N þ 2N=2þ1Þ=8 AI

AI
A

A−1 ð2N − 2N=2þ1Þ=8 AI A

−1 −1
þ1 ð2N þ 2N=2þ1Þ=8 AI

AI
A

A−1 ð2N − 2N=2þ1Þ=8 AI A
þ1 −1 — 2N=4 AI AI AI A
−1 þ1 — 2N=4 AI AI AI A
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eigenbasis of H and its unitary symmetries, H assumes a
block-diagonal structure, and the antiunitary symmetries T
and C must act within a single block. The two-site SYK
Hamiltonian can have two, four, or six blocks, as indicated
in Tables I–IV. The total parity S is always conserved and,
thus, H has at least two blocks identified by its eigenvalues
s ¼ �1. For α ¼ 1, we have the following possibilities:
(1) If q=2 and r are both odd, there is no other unitary
symmetry and there are only two blocks (Table IV). (2) If r
is odd but q=2 is even, Q is a symmetry of H and, because
of QS ¼ SQ, it splits the two blocks into two subblocks
each and we get four blocks, labeled by the eigenvalues of
S, s ¼ �1, and Q, k ¼ �1;�i (Table II). (3) When r is
even, SL and SR are independently conserved, defining, at
least, four blocks, sL;R ¼ �1. If, moreover, q=2 is odd,
these four blocks are the only blocks (Table III). (4) If,
instead, q=2 is even (with r still even), and because
QSL;R ¼ SSL;RQ [see Eq. (S8) of the Supplemental
Material [61]), the two blocks with s ¼ þ1 get split by
Q into two subblocks each, while the two blocks with
s ¼ −1 do not; in total, we get six blocks (Table I). If α ≠ 1,
the blocks of SL;R and S are not split byQ (four blocks for r
even, two for r odd).
Second, TRS is implemented by either T ¼ K (for even

q=2 and any α) or T ¼ QK (for odd q=2 and α ¼ 1). In
either case, we have T2 ¼ þ1 and we conclude that H
displays the same level statistics as random matrices from
either the Gaussian orthogonal ensemble (GOE) [4,11]—if
T acts within a single block of H—, or the Gaussian
Unitary Ensemble (GUE) [4,11]—if T connects different
blocks. This is determined by the commutator of T with the
orthogonal projector onto the respective block, which must
be checked on a case-by-case basis, see the Supplemental

Material [61]. For odd q=2 and α ≠ 1, since Q is not a
symmetry of H, there is no TRS and all blocks display
GUE statistics.
Third, for all cases except for q=2 and r both odd, there is

no PHS, then T is the only antiunitary symmetry, and all
blocks belong either to class AI (if T acts within a single
block) or class A (if it connects different blocks). When q=2
and r are both odd, there exists a PHS implemented by
C ¼ SLK, which squares to C2 ¼ ð−1ÞNðN−1Þ=2, and com-
mutes with the projector into a block with fixed S. In the
left-right symmetric case (α ¼ 1), we thus have simulta-
neous TRS and PHS, and the blocks of H belong to class
BDI (for N mod 4 ¼ 0) or CI (for N mod 4 ¼ 2). In the
asymmetric case (α ≠ 1), we have only PHS and the blocks
belong to class D (N mod 4 ¼ 0) or C (N mod 4 ¼ 2).
Therefore, a slight asymmetry, α ≈ 1, substantially changes
the universality class.
Comparing our results with the tenfold way [12], we can

state the main results of this Letter. We have found a sixfold
classification of the two-site SYK model Eq. (1): classes A,
AI, BDI, CI, C, and D. Remarkably, for some parameters,
different blocks of the same Hamiltonian belong to distinct
symmetry classes, in contrast to the single-site SYK
model [45]. Of the four remaining classes, class AIII—also
not found in the standard single-site SYK model—could be
realized by aWishart extension of themodel [49] based on the
product of two SYKs with complex-conjugated couplings.
On the other hand, no classes with symplectic symmetry (i.e.,
T2 ¼ −1, classes AII, CII, and DIII)—whose level statistics
in the bulk are given by the Gaussian symplectic ensemble
(GSE)—occur in the classification. The absence of these three
classes, which indicates that a time-reversed state never
results in a new state, arises as a fundamental restriction
from the left-right symmetric intersite coupling of two SYKs.
Universality classes with symplectic symmetry can still be
realized if one considers a model with an asymmetric
interaction, see the Supplemental Material [61]. The absence
of AII† statistics (the equivalent of GSE statistics in non-
Hermitian systems [16]) has been observed recently in
Lindbladian quantum dissipative dynamics [65,66], which
by construction has left-right symmetry. Therefore, generic
coupled quantum systems with a left-right symmetric inter-
action do not have this symplectic symmetry.
Level statistics.—To confirm the proposed symmetry

classification, we compare level correlations for different

TABLE II. Same as Table I, but for even q=2 and odd r. There
are four blocks labeled by the eigenvalues of S andQ. The results
are independent of N.

S Q Dimension α ¼ 1 α ≠ 1

þ1
þ1 ð2N þ 2N=2þ1Þ=4 AI

AI−1 ð2N − 2N=2þ1Þ=4 AI

−1 þi 2N=4 AI
AI−i 2N=4 AI

TABLE III. Same as Table I, but for odd q=2 and even r. There
are four blocks labeled by the eigenvalues of SL;R.

N mod 4 ¼ 0 N mod 4 ¼ 2

SL SR Dimension α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 þ1 2N=4 AI A A A
−1 −1 2N=4 AI A A A
þ1 −1 2N=4 A A AI A
−1 þ1 2N=4 A A AI A

TABLE IV. Same as Table I, but for odd q=2 and odd r. There
are two blocks labeled by the eigenvalues of S.

N mod 4 ¼ 0 N mod 4 ¼ 2

S Dimension α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 2N=2 BDI D CI C
−1 2N=2 BDI D CI C
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choices of parameters (N, q, r, and α), with the predictions
of RMT for the corresponding universality classes. This
procedure is justified because the SYK model is quantum
chaotic and deviations from RMT only affect a few
eigenvalues close to the ground state [56]. The spectrum
of the Hamiltonian (1) is obtained by exact diagonalization
techniques. At least 105 eigenvalues are used for a given set
of parameters.
For the study of classes A and AI, we employ the

distribution PðsÞ of the level spacings si ¼ ðEi − Ei−1Þ=Δ,
where Ei is the set of ordered eigenvalues andΔ is the mean
level spacing. We unfold the spectrum [4] using a low-order
(atmost sixth) polynomial fitting.We have found that blocks
with T2 ¼ þ1 (class AI) exhibit GOE level statistics, while
blocks without TRS (class A) display GUE statistics. For
λ ¼ 0, both sites are uncorrelated, so the level statistics are
given by Poisson statistics. Likewise, when λ → ∞, the
integrable HI dominates and thus level statistics are not
given by RMTeither. Therefore, it is necessary to choose an
intermediate value of λ, so that levels are sufficiently mixed
by the interaction. As an illustrative example, Fig. 1 depicts
the level spacing distribution in a case with even q=2 and r,
N mod 4 ¼ 2, and α ¼ 1, where the classification predicts
class A (in blocks with total parity s ¼ þ1) or AI (s ¼ −1).
These results confirm the agreement with the RMT
prediction for the expected universality class, even in the
tail of the distribution. An exhaustive confirmation of all the
remaining cases, employing the spacing ratio distribution
[67,68], is presented in the Supplemental Material [61].
The remaining four universality classes (BDI, CI, C, and

D) are related to the existence of involutive symmetries that
anticommute with the Hamiltonian. As a result, the
spectrum is symmetric around E0 ¼ 0. Spectral correla-
tions very close to E0, probed by, e.g., the microscopic
spectral density [23] expressed in units of the local mean
level spacing, or the distribution of eigenvalues closest to
E0 [48,69–73], have distinct features that fully characterize
the four universality classes. To illustrate this, in Fig. 2, we

compare the microscopic spectral density around
E0 ¼ 0 for odd q=2 and r, and different values of N
mod 4 and α, corresponding to universality classes BDI
(α ¼ 1,N mod 4 ¼ 0), CI (α ¼ 1,N mod 4 ¼ 2), D (α ≠ 1,
N mod 4 ¼ 0), and C (α ≠ 1, N mod 4 ¼ 2), see Table IV.
In all cases, we find excellent agreement with the RMT
result. The complementary analysis in terms of the dis-
tribution of the eigenvalue closest to E0 ¼ 0, presented in
the Supplemental Material [61], shows a similar agreement.
Traversable wormhole classification.—Having estab-

lished the symmetry classification of the SYK Hamiltonian
Eq. (1), we now study for which parameters (q, r, λ, and
temperature T), this model is related to a traversable
wormhole [53,74] in a near AdS2 background [75,76].
First, we note that the traversable wormhole [53] requires a
weak intersite coupling λ ≪ 1, and a low temperature T,
i.e., strong intrasite coupling. The small-λ condition is
necessary to account rigorously [53,74] for the effect of a
double trace deformation coupling the two boundaries in
the gravitational path integral. In this limit, the holographic
relation between the two-site SYK model and the gravity
system is established by demonstrating that both models
share the same low-energy effective action, which, in this
case, is a generalized Schwarzian [53]. For q ¼ 4 and
r ¼ 1, this program was carried out in Ref. [53]. A distinct
feature of the wormhole phase for r ¼ 1, confirmed by the
numerical solution of the large-N Schwinger-Dyson (SD)
equations [39], is the existence of a gapped ground state at
low temperature. Since λ ≪ 1, the gap Eg ∼ λγ , γ ¼ 2=3 <
1 for q ¼ 4, is enhanced with respect to the perturbative
result Eg ∼ λ. Physically, this is interpreted as an enhanced
tunneling rate induced by the strong intrasite interactions in
the SYK model, and as a traversable wormhole on the
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gravity side. Generally, a gap Eg ∼ λγ with γ < 1 for λ ≪ 1

is a defining feature of the traversable wormhole phase.
Based on this definition, we constrain the previous sym-
metry classification to the values of q and r for which the
SYK model Eq. (1) has an interaction-enhanced gap,
i.e., γ < 1.
In order to proceed, we generalize the results of Ref. [53]

by simply replacing Δ≡ 1=q → r=q in the generalized
Schwarzian action of Ref. [53]. The resulting gap is
given by

Eg ∝ λ
q

2ðq−rÞ: ð8Þ

We have confirmed this scaling with λ in the large-N limit
by computing Eg numerically from the solution of the SD
equations [39]. Results depicted in Fig. 3 for different q and
r show an excellent agreement between the numerical result
and analytic prediction γ ¼ q=½2ðq − rÞ�. For the technical
procedure to solve the SD equations and extract the gap
from the Green’s function decay, we refer to both
Refs. [53,56] and the Supplemental Material [61].
As a consequence of Eq. (8), only SYKs of the form (1)

with q > 2r (purple region in Fig. 3) can be dual to a
traversable wormhole. For q < 2r (white region in Fig. 3),
γ ≥ 1 and hence there is no tunneling enhancement, so
there is no wormhole phase. The borderline case q ¼ 2r
(dashed line in Fig. 3) would require further analysis to
completely rule out the existence of a wormhole dual.
While we have so far restricted ourselves to the case of
identical SYKs, the observation of universality classes D
and C requires α ≠ 1. This is not a problem because

wormhole features are not qualitatively affected provided
that α is sufficiently close to one [53,56]. Most importantly,
the condition q > 2r does not restrict the possible sym-
metry classes and all six occur for either α ¼ 1 or α ≈ 1.
Finally, we note that another feature associated with a
traversable wormhole, namely, the existence of a first-order
phase transition in the free energy, also occurs in our SYK
setting, see the Supplemental Material [61].
In conclusion, based on the relation between a two-site

SYK model at low temperature and weak intersite cou-
pling, we have identified AdS2 traversable wormholes
belonging to six universality classes: A, AI, BDI, CI, C,
and D. Wormholes with symplectic symmetry (classes AII,
CII, and DIII) are conspicuously missing. Moreover,
enhanced tunneling that is a signature of wormhole physics
only occurs for q > 2r, see Eq. (8). A natural extension of
this work is the symmetry classification of coupled non-
Hermitian SYKs, whose gravity dual are Euclidean and
Keldysh wormholes [53–55,65,77].
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