
Spontaneous Hopf Fibration in the Two-Higgs-Doublet Model

R. A. Battye* and S. J. Cotterill †

Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester,
Manchester M13 9PL, United Kingdom

(Received 21 September 2023; revised 5 January 2024; accepted 9 January 2024; published 7 February 2024)

We show that energetic considerations enforce a Hopf fibration of the standard model topology within
the 2HDMwhose potential has either an SO(3) or U(1) Higgs-family symmetry. This can lead to monopole
and vortex solutions. We find these solutions, characterize their basic properties and demonstrate the nature
of the fibration along with the connection to Nambu’s monopole solution. We point out that breaking of the
Uð1ÞEM in the core of the defect can be a feature which leads to a nonzero photon mass there.
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Introduction.—The vacuum manifold of the standard
model (SM) of particle physics is a three-sphere (M ¼ S3)
implying that there are no stable topological configurations
in 3D since π2ðMÞ ¼ I, where πnðMÞ is the nth homotopy
group of the manifold. However, there are interesting
topological solutions with one unstable mode in 3D
(sphalerons [1]) and 2D (electroweak vortices [2,3]) char-
acterized by π3ðMÞ ¼ Z. Nambu suggested a mono-
polelike configuration [4] which can be understood via a
local Hopf fibration S3 ≅ S2 × S1 [5], which we discuss in
more detail in Supplemental Material [6], such that
π2ðS2 × S1Þ ¼ Z. However, this configuration is known
to be unstable and, if it were to be realized, it would need to
be combined with a string to form so-called “dumbbell”
configurations [8,9]. The dynamics of such configurations
has been linked with the production of primordial magnetic
fields [10,11] and monopoles are being actively searched
for in laboratory experiments [12].
We will discuss the two-Higgs doublet model (2HDM)

[13]; in particular onewhere there are accidental symmetries.
If the two doublets are Φ1 and Φ2 with ΦT ¼ ðΦ1Φ2Þ
then the potential is given by VðΦ1;Φ2Þ ¼ V2 þ V4, where
V2 ¼ −μ21jΦ1j2 − μ22jΦ2j2 and V4 ¼ λ1jΦ1j4 þ λ2jΦ2j4 þ
λ3jΦ1j2jΦ2j2 þ λ4jΦ†

2Φ1j2 which is Uð1ÞPQ symmetric.
The symmetry can be enhanced to SOð3ÞHF if μ2 ¼ μ1,
λ2 ¼ λ1, and λ4 ¼ 2λ1 − λ3 [14,15].
The particle spectrum is well understood, for example

[13,16]. There are five Higgs particles: two of which are
CP even with masses Mh and MH, a CP odd pseudoscalar
withMA and two charged Higgs particles withMH� . In the
standard model alignment limit the h particle is that

detected by experiments at the LHC and a wide range of
measurements suggest that this limit should be close to
being the case [17–21]. If there is a global Uð1ÞPQ sym-
metry thenMA ¼ 0 and if this is extended to SOð3ÞHF then
in addition one has MH ¼ 0.
Topological defect solutions [22,23] associated with

these symmetries were studied in detail in the context of
the 2HDM in [15]. In particular, there can be domain
wall [15,24–27], global vortex [15], and global monopole
solutions [7]. Motivating the present study is the observa-
tion, based on field theory simulations from random initial
conditions, that the vacuum is not neutral in the core of
these defects [7,24,27] contrary to the assumption of [15].
We will see that this has profound implications. One should
note that there are also several papers discussing non-
topological configurations [28–31] and other compound
structures of topological defects [32,33] (without any
neutral vacuum violation) in the 2HDM that can be
dynamically stable in certain regions of the parameter
space. Here, we will focus purely only on topologically
stabilized objects.
Accidental symmetries can be gauged using a covariant

kinetic term

DμΦ ¼
��
σ0 ⊗ σ0

�
∂μ þ

1

2
igðσ0 ⊗ σaÞWa

μ

þ 1

2
ig0

�
σ0 ⊗ σ0

�
Yμ þ

1

2
ig00

�
σa ⊗ σ0

�
Va
μ

�
Φ; ð1Þ

where σμ ¼ ðσ0; σaÞ are the Pauli matrices including the
identity. Wa

μ and Yμ are the standard model gauge fields,
with coupling constants g and g0, respectively, and Va

μ are
the new gauge fields associated with the accidental sym-
metries with coupling constant g00—see Ref. [6] for more
details on the symmetry transformations. For the purposes
of this work, we set g0 ¼ 0 in order to simplify the defect
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solutions, but note that we do not expect any changes in the
qualitative features for nonzero g0.
Gauging the symmetries provides a natural mechanism

for removing the Goldstone modes associated with the
accidental symmetries allowing for a potentially viable
model. In particular in the case of a Uð1ÞPQ symmetry the
Goldstone mode with MA ¼ 0 becomes a massive gauge
boson. There can be interesting models constructed with
these symmetries, for example, models that can generate
masses for neutrinos [34–36].
In this Letter, we will show that the Hopf fibration

associated with the Nambu monopole is realized on
energetic grounds within the 2HDM when there is either
a SOð3ÞHF or Uð1ÞPQ symmetry; something that we term
“spontaneous Hopf fibration” (SHF). We will find monop-
ole and vortex solutions for the case where the symmetries
are gauged (although these can be easily adapted to the
global limit).
Parametrizations and topology.—The eight fields of the

2HDM can be reparametrized as

Φ ¼ vSMffiffiffi
2

p eð1=2Þiχ
�
σ0 ⊗ UL

��
0 f1 fþ f2eiξ

�
T; ð2Þ

using five fields f1;2;þ, ξ, and χ, and UL ∈ SUð2ÞL which
has 3 degrees of freedom. The constant vSM ¼ 246 GeV is
the standard model vacuum expectation value and fþ ¼ 0
corresponds to a neutral vacuum with zero photon mass.
These degrees of freedom can also be encoded using
bilinear forms, Rμ ¼Φ†ðσμ ⊗ σ0ÞΦ, na ¼ −Φ†ðσ0 ⊗ σaÞΦ
and R̃ ¼ 2ΦT

2 iσ
2Φ1, which are useful for understanding

the topology of the vacuum manifold and the associated
defects [7,15,37]. In particular, the neutral vacuum viola-
tion discovered in the core of defects in [7,24] can be traced
by Rþ ¼ RμRμ, with Rþ ¼ 0 corresponding to a neutral
vacuum. One finds that two of the UL degrees of freedom
are encoded in n̂a, with the other associated with rotations
about this axis, and the hypercharge degree of freedom UY

is encoded in R̃ ∝ exp½iχ�. In contrast, Rμ is invariant under
the standard model symmetries and contains the degrees of
freedom that will, in general, change the potential. The R0

component is jΦj2 and so does not contribute to the
topology of the vacuum manifold. The topological non-
triviality of the vacuum manifold can, therefore, be most
easily extracted by looking at the remaining three-vector
Ra, which will contain all of the degrees of freedom
associated with any additional symmetry transforma-
tions, UH.
A notable difference between this topology and that of

the ’t Hooft-Polyakov monopole [38,39] and Nielsen-
Olesen vortex [40] is that the topology lives in a space
associated with these bilinear forms, rather than the fields
themselves, which means that a half twist in field space can
be topologically nontrivial and, in general, there is a factor

of 2 difference between the topological degree of a field
configuration and what one might naively expect. A
consequence of this is that simple field configurations with
unit winding often have discontinuities which must be
resolved by the attachment of another soliton. It is for this
reason that the Nambu monopole [4] has a string “emanat-
ing” from one of its poles.
In the SOð3ÞHF case Ra only contributes to the potential

with a term ∝ RaRa, so rotations between the three com-
ponents of Ra are a symmetry of the potential, generating
an S2 component of the vacuum manifold. Note that the
topology is not S3 as one might expect because UH cannot
perform rotations about Ra—this degree of freedom is
already contained within UL for rotations about na.
Similarly, in the Uð1ÞPQ case, the R3 component splits
off from the other two but there remains a symmetry for
rotations between R1 and R2, which is responsible for an S1

direction. In general, there is an additional S1 × S3 asso-
ciated with the hypercharge and isospin symmetries
because the degeneracy between UY and one of the
directions in UL is broken by fþ. Since this results in a
massive photon, we avoid this scenario and choose the
parameters so that fþ ¼ 0 in the vacuum, restoring the
degeneracy so that the SM symmetries only contribute S3.
Therefore, the topology of the vacuum manifolds associ-
ated with the accidental symmetries are M ¼ S2 × S3 for
the case of SOð3ÞHF and M ¼ S1 × S3 for Uð1ÞPQ [15],
which admit monopoles and vortices due to the nontrivial
homotopy groups π2ðS2 × S3Þ ¼ Z and π1ðS1 × S3Þ ¼ Z,
respectively.
Monopole solutions.—In the SOð3ÞHF symmetric model,

using 3D spherical polar coordinates ðr; θ;ϕÞ, we can
construct the monopole ansatz for the scalar field [6,7]

Φðr; θ;ϕÞ ¼ vSM
2

ffiffiffi
2

p

0
BBBB@

−ðkþ kþÞ sin θe−iϕ
ðk − kþÞ þ ðkþ kþÞ cos θ
−ðk − kþÞ þ ðkþ kþÞ cos θ

ðkþ kþÞ sin θeiϕ

1
CCCCA; ð3Þ

where k ¼ kðrÞ and kþ ¼ kþðrÞ are functions constructed
from f1;2;þ that retain the ability to change the potential
energy while the other degree of freedom (as well as ξ) is
used to wind around the vacuum manifold. This ansatz
has the property that Ra ¼ na ¼ ðk2 − k2þÞr̂a. The feature
R̂a ¼ r̂a is necessary for a monopole configuration with
unit winding (or related to this by a homomorphism) and
this structure, by itself, would give rise to a 2HDM
equivalent of the Nambu monopole—with a divergence
in the gradient energy that necessitates the emergence of a
string from one of the poles. However, the isospin degrees
of freedom, contained within UL, can resolve this diver-
gence when we also have that n̂a ¼ r̂a, which gives the
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appearance of an underlying topological complexity in the
structure of na, but it occurs for energetic reasons that are
only indirectly topological. The degree of freedom asso-
ciated with rotations about na contains no structure—only
the possibility for global transformations—and it is this
effect that we have termed SHF. The S3 of the SM becomes
S2 × S1 with the S2 part inheriting the same twists as the S2

of the SOð3ÞHF symmetry and the S1 part containing
nothing except possible global rotations.
For the gauge fields, we choose to work in the temporal

gauge such that the time components of the gauge fields are
zero and make the ansatz gWa

i ¼ −ð1=rÞhðrÞϵaijr̂j and
g00Va

i ¼ −ð1=rÞHðrÞϵaijr̂j. After the standard rescaling
to reduce the number of significant parameters in the
model by two, we find that the energy functional under
this ansatz is

E ¼ 4πvSM
g

Z
r2dr

�
1

2

�
dk
dr

	
2

þ 1

2

�
dkþ
dr

	
2

þ 1

8r2
ðkþ kþÞ2ðhþH − 2Þ2 þ 1

8r2
ðk− kþÞ2ðh−HÞ2

þ 1

2r2

�
2

�
dh
dr

	
2

þ 1

r2
h2ð2− hÞ2

�
þ 1

2g̃2r2

�
2

�
dH
dr

	
2

þ 1

r2
H2ð2−HÞ2

�
þ λ̃

4

�
ðk2 þ k2þ − 1Þ2 − ζ4k2k2þ

�

;

ð4Þ

where the remaining parameters are g̃ ¼ g00=g, λ̃ ¼ λ=g2,
and ζ4 ¼ λ4=λ. Neutral vacuum violation occurs when both
k and kþ are simultaneously nonzero and we choose, by
convention, kþ to be zero in the vacuum. We can perform a
simple analysis (neglecting gradient energy contributions)
to predict when there will be neutral vacuum violation in
the core of the monopole by looking at the effective mass
m2

kþ ¼ λ½2ðk2 − 1Þ − ζ4k2�=4. If a monopole were to have
kþ ¼ 0 everywhere, then the effective mass at the core of
the monopole (where k ¼ 0) would be −ðλ̃=2Þ, which is
always negative and independent of ζ4. The presence of this
negative mass term indicates that the energy would be
reduced if kþ ≠ 0 and therefore we expect neutral vacuum
violation to be a generic effect in the core of 2HDM
monopoles.
In Fig. 1 we present the energy and Rþð0Þ (fixing

vSM ¼ 1) as a function of the mass ratio ϵ ¼ MH�=Mh ¼
1
2

ffiffiffiffiffiffiffiffi
−ζ4

p
and we also show an example solution in the inset

plot. As expected, for all values of ϵ presented here, there is
neutral vacuum violation in the core of the monopole,
although it decreases as ϵ grows and appears to be
approaching zero, while conversely, the energy grows with
ϵ and appears to be approaching a maximum. Perhaps the

most noticeable feature of the solution is that kþ kþ ¼ 0 at
the center—in fact this is enforced by the gradient energy
and is true for all values of ϵ. The effects of λ̃ can be broadly
described as changing the length scale ratio between the
scalar fields and the vector fields and, similarly, g̃ changes
the length scale ratio between the two gauge fields.
Vortex solutions.—In the Uð1ÞPQ symmetric case, using

plane polar coordinates ðr; θÞ, we can make the vortex
ansatz Φ ¼ Φðr; θÞ from Eq. (2) with fi ¼ fiðrÞ for i ¼
1; 2;þ and ξ ¼ θ [6] which has a similar property to the
monopole in that R̂b ¼ n̂b ¼ r̂b, where b∈ ½1; 2�, although
now, unlike the monopole case, nb ¼ 0 in the vacuum. The
remaining components are R3 ¼ f21 − f2þ − f22 and
n3 ¼ f21 − f2þ þ f22. We note that, in a similar way to the
Nambu monopole solution, there is a stringlike configura-
tion, characterized by π1ðS2 × S1Þ ¼ Z and with structure
only in Rb, where the divergence in the gradient energy is
resolved by attaching a domain wall to one side. This is
related to an unstable (due to the tension in the wall)
configuration in the SM where n̂b ¼ r̂b. Once again, for the
2HDM configuration, we can use the isospin rotations to
resolve the divergence without the domain wall. The SHF
acts here, again, to split S3 → S2 × S1, but now it is the S1

part that inherits the twists of the Uð1ÞPQ.
Now we choose to make a gauge transformation that

absorbs the phase winding of the scalar field into Wa
i and

V3
i [the only new gauge field in the Uð1ÞPQ model] so that

we can make the ansatz gWa
i ¼ ð1=rÞfh1ðrÞx̂a þ ½1 −

h3ðrÞ�ẑagθ̂i þ h2ðrÞŷar̂i and g00V3
i ¼ ð1=rÞ½1 −HðrÞ�θ̂i.

Again, if we make the standard rescalings then we can
express the energy per unit length of the string as

FIG. 1. The variation of E (black) and Rþ at the monopole core
(dotted orange) as a function of the mass ratio ϵ, with the other
parameters fixed to λ̃ ¼ 1 and g̃2 ¼ 2. The inset plot presents the
field profiles of an example solution (ϵ ¼ 1) and also displays the
energy density, ε, and Rþ.
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E ¼ 2πv2SMη
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rdr
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�
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f21 − 1
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2
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f2þ þ f22 − η̃2
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2 þ ζ3f21
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f2þ þ f22

�þ ζ4f21f
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2

�

; ð5Þ

where g̃ ¼ g00=g, η̃ ¼ η2=η1, λ̃1 ¼ λ1=g2, and ζi ¼ λi=λ1 so
that the model is left with six parameters (ηi is defined by
the relationship μ2i ¼ λiη

2
i v

2
SM). We can perform an effec-

tive mass analysis here too, just as in the monopole case.
The relevant effective mass is m2

fþ ¼ λ̃1½2ζ2ðf22 − η̃2Þ þ
ζ3f21�=4 and if the string were to have fþ ¼ 0 everywhere,
as well as f1ð0Þ ¼ 1 and f2ð0Þ ¼ 0, then this would take
the value λ̃1½−2ζ2η̃2 þ ζ3�=4, so the neutral vacuum vio-
lation in the core is not generic but depends upon the sign of
ζ3 − 2ζ2η̃

2. Note that f2ð0Þ ¼ 0 is enforced by the winding
of the string but f1ð0Þ ¼ 1 is an overly simplistic
assumption, even if fþ ¼ 0 everywhere, so this approach
will be less accurate for vortices than for the monopoles.
In Fig. 2 we present the field profiles of a string solution

with a separate inset plot showing the energy density and
Rþ for the same solution and in Fig. 3 we show how Rþ, at
the core of the string, varies with the mass ratios ϵ ¼
MH�=Mh and δ ¼ MH=Mh, in the alignment limit and with
tan β ¼ 1 (which sets the vacuum values of the fields so that
jΦ1j2 ¼ jΦ2j2 ¼ v2Φ). Note that we have rescaled Rþ →
Rþ=ðvΦvSMÞ4 implicitly in these plots.

From the profiles we see that the solution has retained a
feature that is similar to one observed for the monopole
solutions, namely that f1 ¼ fþ at the center. However, this
is no longer guaranteed by the gradient energy and, in fact,
is only an approximate equality that occurs in a subset of
the parameter space. The parameters λ̃1 and g̃2 play a very
similar role to the equivalent parameters from the monopole
case but the other parameters have more complicated
effects on the solutions that are difficult to broadly
summarize in this way. From the contour plot we can
see that there is a clear transition across the line which is
approximately ϵ ¼ δ, corresponding to ζ3 ¼ 2. Because of
our fixed parameter choices we have ζ2 ¼ η̃2 ¼ 1 and
therefore this is consistent with the behavior that we
predicted from the effective mass analysis.
Discussion and conclusions.—The solutions that we

have presented in this Letter are evidence of a new
mechanism—that we have called “spontaneous Hopf
fibration”—at work in the 2HDM. It allows for a topo-
logically nontrivial subspace of the vacuum manifold to
imprint itself onto another, topologically trivial section of

FIG. 2. The field profiles for a string solution with λ̃1 ¼ 1,
g̃2 ¼ 1, η̃2 ¼ 1, ζ2 ¼ 1, ζ3 ¼ −0.4, and ζ4 ¼ −0.8—the last four
parameter choices corresponding to the alignment limit with
ϵ ¼ 1, δ ¼ 2, tan β ¼ 1. The inset plot displays the energy
density, ε, and Rþ for the same solution.

FIG. 3. A contour plot showing how Rþ at the string core varies
with the mass ratios ϵ and δ in the alignment limit and with
λ̃1 ¼ g̃2 ¼ tan β ¼ 1. Note that the dark blue color on most of the
lower right region of the plot is off the bottom of the color scale—
corresponding to a neutral vacuum.
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the manifold. This results in solitons that appear to have
topological structure in the SM degrees of freedom but,
in fact, it is purely caused by energetics. The coupling
between the S3 of the SM to the rest of the vacuum mani-
fold, in the gradient energy term, causes a Hopf fibration of
the space S3 → S2 × S1, with the appropriate component of
this space taking on structure to match the winding around
S2 for monopoles and S1 for strings.
In [7] we present evidence from simulations of the global

2HDM model in which stable monopoles form that have
neutral vacuum violation in the cores and a structure in the
bilinear vectors that is the same as what one would expect
from the solutions presented here. In [6] we do the same for
the case of strings. These simulations suggest that the
solutions we have found are those most relevant to the
study of topological defects in the 2HDM.
A phenomenologically relevant consequence of the SHF

in the 2HDM is that it allows for the neutral vacuum
condition to be violated inside the core of the defects,
generating a nonzero mass for the photon. In the case of
strings, this is dependent upon the choice of parameters,
however in the monopole case it is predicted to always
occur if the gradient energy contributions are neglected.
The interaction between photons and superconducting
defects has been analyzed in [41] for a toy model but this
work has opened up the possibility for novel interactions
between standard model particles and 2HDM defects which
are deserving of more investigation. In [7] it was observed
that the additional structure of global 2HDM monopoles
did not affect the scaling of their number density, but other
potential cosmological consequences warrant further stud-
ies of these defects.
Wewould like to conclude by emphasising that, although

we have discussed SHF in the context of the 2HDM, we
suggest that it could be a more general effect that can occur
in other models that have vacuum manifolds constructed
from coupled subspaces, when at least one of them is
topologically nontrivial.
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