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Critical metrology relies on the precise preparation of a system in its ground state near a quantum phase
transition point where quantum correlations get very strong. Typically, this increases the quantum Fisher
information with respect to changes in system parameters and thus improves the optimally possible
measurement precision limited by the Cramér-Rao bound. Hence critical metrology involves encoding
information about the unknown parameter in changes of the system’s ground state. Conversely, in
conventional metrology methods like Ramsey interferometry, the eigenstates of the system remain
unchanged, and information about the unknown parameter is encoded in the relative phases that excited
system states accumulate during their time evolution. Here we introduce an approach combining these two
methodologies into a unified protocol applicable to closed and driven-dissipative systems. We show that the
quantum Fisher information in this case exhibits an additional interference term originating from the
interplay between eigenstate and relative phase changes. We provide analytical expressions for the quantum
and classical Fisher information in such a setup, elucidating as well a straightforward measurement
approach that nearly attains the maximum precision permissible under the Cramér-Rao bound. We
showcase these results by focusing on the squeezing Hamiltonian, which characterizes the thermodynamic
limit of Dicke and Lipkin-Meshkov-Glick Hamiltonians.
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Introduction.—Quantum metrology is a cornerstone of
quantum technologies [1,2] aimed at leveraging quantum
phenomena for precision measurements, surpassing the
limits imposed by classical physics [3,4]. A key example
involves exploiting quantum entanglement in systems com-
posed ofN particles to overcome the statistical

ffiffiffiffi
N

p
enhance-

ment (known as the standard quantum limit) and reaching
the Heisenberg limit, where sensitivity scales linearly with
the number of particles [5–7]. In the simplest case, quantum
correlations are generated within a system subjected to an
unknown perturbation to be precisely determined. In the
generic case of Ramsey interferometry [8–13], the unknown
perturbation (parameter) could be themagnetic field respon-
sible for Zeeman splitting of the atomic levels (magnetom-
etry) or the frequency detuning of a reference laser driving
the atoms (atomic clocks). This external force introduces a
change in the system’s state (phase) depending on the value
of the unknown parameter. Therefore, performing an appro-
priate measurement allows one to detect the change and
decode the information about the unknown parameter
concealed in the measurement outcomes.
Unfortunately, creating and maintaining entanglement

is technically very challenging owing to its inherent
fragility [14]. Furthermore, highly entangled states often
require extensive detection schemes involving measuring
complex many-body correlations [15] to harness their
measurement power. For these reasons, quantum-enhanced
measurements remain primarily in the domain of proof-
of-principle experiments [16]. Nonetheless, significant

theoretical and experimental efforts have emerged to over-
come these challenges, leading to innovative methods and
techniques. [17–23]. A novel and promising approach here
is critical metrology [24–27], which relies on concurrently
generating quantum correlations while exposing the system
to the influence of a force of unknown strength [26,28,29].
This differs from the conventional sequential approach
of first creating a critical state and then subjecting it to
an unknown perturbation [30]. In critical metrology, the
system typically remains in its instantaneous ground state
as the control parameter is adiabatically adjusted close to a
critical value. Consequently, critical metrology protocols
exhibit resilience to decoherence, albeit at the cost of the
time required to complete the adiabatic ramp, a phenome-
non known as critical slowing down. Recent findings
challenge, however, the need for adiabatic ramps in critical
metrology. Instead, they propose that protocols can achieve
significantly improved performance by opting for a sudden
quench rather than an adiabatic one. This insight has
opened new avenues for advances in critical metrology
methods [31–34].
The conventional practice of adhering to the instanta-

neous ground state via adiabatic dynamics confines the
storage of information regarding an unknown parameter
solely to the fast changing properties of the ground state
near a critical point. However, when the initial state is
not the ground state or another eigenstate of the system,
the adiabatic dynamics also results in the encoding of
some information about the unknown parameter in the
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accumulated phase differences between the contributing
eigenstates (refer to Fig. 1 for a schematic representation).
In the following, we will present the generalized

approach to combine these two metrological approaches
and apply it to the example of a harmonic oscillator coupled
to an ensemble of two-level systems (Dicke model).
Additionally, we show how a position or momentum
(homodyne type) measurement nearly saturates the com-
bined Cramér-Rao bound for the corresponding measure-
ment accuracy.
Combining critical and quantum metrology.—The

fusion of critical and conventional metrology becomes
evident when examining the derivative of the wave function
with respect to an unknown parameter, denoted as Ω,

j∂ΩψðΩÞi¼∂Ω

 X∞
n¼0

cnðΩÞjnðΩÞi
!
¼
X∞
n¼0

½∂ΩcnðΩÞ�jnðΩÞi

þ
X∞
n¼0

cnðΩÞ½∂ΩjnðΩÞi�; ð1Þ

where
P∞

n¼0 ½∂ΩcnðΩÞ�jnðΩÞi represents the phase
changes (conventional quantum metrology) andP∞

n¼0 cnðΩÞ½∂ΩjnðΩÞi� represents the wave function’s
shape changes (critical metrology). This derivative can
be used to calculate the quantum Fisher information
IΩ ¼ 4½h∂Ωψ j∂Ωψi − jhψ j∂Ωψij2�, which sets the minimal
uncertainty to estimate an unknown parameter through the
Cramér-Rao bound ΔΩ ≥ 1=

ffiffiffiffiffiffi
IΩ

p
[35]. Calculating the

corresponding expression of the quantum Fisher informa-
tion yields (for readability we drop the dependence on Ω)

IΩ ¼ 4
X
n

j∂Ωcnj2 − 4
���X

n
c�n∂Ωcn

���2 ð2Þ

þ 4
X
n;m

cmc�nh∂Ωnj∂Ωmi−
���X

n;m
cmc�nhnj∂Ωmi

���2 ð3Þ

þ 4
X
n;m

c�n∂Ωcmh∂Ωnjmi þ c:c:

− 4
X
n;m;k

c�ncmc�k∂Ωckh∂Ωnjmi þ c:c:; ð4Þ

where c.c. stands for the complex conjugate. The first line
in the above equation is related to conventional metrology
(Iϕ), the second line to critical metrology (Iξ), and the last
two lines describe the interference between critical and
quantum metrology (I I). The total quantum Fisher infor-
mation is the sum of the three parts IΩ ¼ Iϕ þ Iξ þ I I .
The quantum Fisher information accurately defines the

fundamental limit of uncertainty, assuming an optimal
measurement has been executed to extract information
regarding the unknown parameter. However, in some
instances, conducting such measurements can be exceed-
ingly intricate and may surpass the capabilities of current
experimental techniques. Consequently, we have to con-
sider the classical Fisher information, which factors in a
well-defined measurement strategy under practical con-
straints. The classical Fisher information can be defined
using the conditional probability pðχjΩÞ of observing an
outcome labeled by χ given Ω in the following way:

FΩ ¼
X
χ

1

pðχjΩÞ
�
∂pðχjΩÞ

∂Ω

�
2

: ð5Þ

Numerous relevant physical systems and quantum tech-
nologies hinge on the interplay among Gaussian states,
Gaussian operations, and Gaussian measurements [36,37].
This apparent limitation to the Gaussian realm, however,
offers several advantages. It facilitates the utilization of
straightforward analytical tools on the theoretical front and
readily accessible components for implementing Gaussian
processes in laboratory experiments. If the probability
pðχjΩÞ is Gaussian (characterized by the first and the
second moment only), the classical Fisher information can
be simplified to [38]

FΩ ¼
�
∂ΩhÔi

�
2

Δ2Ô
þ 1

2

�
∂ΩΔ2Ô

�
2

�
Δ2Ô

�
2

; ð6Þ

where hÔi ¼Pχ χpðχjΩÞ is the mean of the distribution

and Δ2Ô is its variance. If Ô represents a quadrature or
collective spin operator, then the second term is nonzero
only if the quantum state changes its shape. This means it
only corresponds to the critical metrology contribution to
the classical Fisher information. The first term, on the other
hand, contains the conventional and interference term,
which means it disappears for solely critical metrology
protocols.
Dicke model.—The Dicke model describes the interac-

tion between a quantized harmonic oscillator and a col-
lection of two-level systems [39]. Notably, the Dicke model
can be simulated using various physical platforms [40–43].
Its Hamiltonian can be expressed as (ℏ ¼ 1)

FIG. 1. In conventional metrology (blue color), the information
about the unknown parameter is stored in the accumulated phase
δϕ. In critical metrology (red color), the information about the
unknown parameter is stored in the squeezing parameter δξ
(accumulated squeezing). By combining these two approaches
(green color) it is possible to store the information in both the
phase (position) and squeezing (shape) of the quantum state.

PHYSICAL REVIEW LETTERS 132, 060801 (2024)

060801-2



Ĥ ¼ ωâ†âþ Ω
2

XN
i¼1

σ̂iz þ
g

2
ffiffiffiffi
N

p ðâ† þ âÞ
XN
i¼1

σ̂ix; ð7Þ

where ω is the frequency of the harmonic mode created by
â† and annihilated by â, and Ω is the frequency of a single
two-level system described by the set of Pauli matrices σ̂i
with i ¼ x, y, z. The two subsystems are coupled with
strength g. For Ω ≫ ω, the dynamics of the spins can be
eliminated [44], and provided the coupling is not greater
than the critical coupling gc ≡

ffiffiffiffiffiffiffi
Ωω

p
, the effective

Hamiltonian becomes [45,46]

Ĥ ≈ ωâ†â −
g2

4Ω
ðâ† þ âÞ2; ð8Þ

which is a squeezing Hamiltonian typically studied in the
context of critical metrology [25,26,28,31,33,47–50]. In
the following, we assume that we always stay in regimes
where the effective Hamiltonian (8) is valid. Note that the
above Hamiltonian also describes the Lipkin-Meshkov-
Glick model in the thermodynamic limit. The eigenspec-
trum of the Hamiltonian (8) is

jψni ¼ exp

�
1

2
ðξ�â2 − ξâ†2Þ

	
jni; ð9Þ

where ξ ¼ 1
4
lnf1 − g2=g2cg is the squeezing parameter and

jni are Fock states generated by â† acting on the vacuum
j0i. These states can be used to construct an arbitrary wave
function and calculate the Fisher information.
In order to increase the dependence of the wave function

on the unknown parameter, instead of using the ground
state (critical metrology), we first displace the initial state
creating a coherent state characterized by α≡ jαjei arg α.
Subsequently, we adiabatically increase the coupling (con-
trol) parameter from 0 toward the critical point gc.
According to the adiabatic theorem, the final state is given
by [51]

jψðtÞi ¼ e−
jαj2
2

X∞
n¼0

e−i
R

t

0
Enðt0Þdt0eiγn

αnffiffiffiffiffi
n!

p jnðtÞi; ð10Þ

where EnðtÞ ¼ nω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gðtÞ2=g2c

p
is the nth in-

stantaneous eigenenergy of Hamiltonian (8) and γn¼R g
0 hnðg0Þj∂g0 jnðg0Þidg0 is the geometric (Berry) phase [52].
It can be shown that a ramp [26]

gðtÞ ¼ 2gc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γωtðγωtþ 1Þp
2γωtþ 1

; ð11Þ

with γ ≪ 1, satisfies the adiabatic condition. Assuming
gðTÞ≡ gf ∼ gc, the total time of the evolution becomes

T ¼ 1

2γω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2f=g

2
c

q ; ð12Þ

where gf is the final value of the coupling.
We can now proceed to calculate the quantum Fisher

information. This can be done by using a derivative of the
instantaneous wave function with respect to the unknown
parameter

j∂Ωψi ¼ e−
jαj2
2

X∞
n¼0



∂Ωe

−i
R

T

0
EnðtÞdt

�
αnffiffiffiffiffi
n!

p jnðTÞi

þ e−
jαj2
2

X∞
n¼0

e−i
R

T

0
EnðtÞdt αnffiffiffiffiffi

n!
p ∂ΩjnðTÞi: ð13Þ

Note that the Berry phase is zero because the eigenstates
jnðTÞi are real [53]. In order to calculate the quantum
Fisher information, we simplify the above expression. Let
us have a look at the first term containing

∂Ωe
−i
R

T

0
EnðtÞdt ¼ ∂Ωe

−in
R

T

0
E0ðtÞdt; ð14Þ

where E0ðtÞ is the instantaneous energy gap between two
neighboring energy levels (this is only true for a harmonic
oscillator). By plugging the adiabatic ramp and the expres-
sion for the final time, the accumulated phase becomes
(assuming gf ∼ gc)

ϕ ¼
Z

T

0

E0ðtÞdt ¼
gf log



1ffiffiffiffiffiffiffiffiffiffiffiffi

1−g2f=g
2
c

p þ 1

�
2γ

ffiffiffiffiffiffiffi
Ωω

p : ð15Þ

This allows us to conveniently rewrite the final state as

jψðTÞi ¼ ŜðξÞD̂ðαe−iϕÞj0i: ð16Þ

By acting with the derivative operator on the above wave
function, we get

j∂ΩψðTÞi ¼
ðâ2 − â†2ÞŜðξÞD̂ðαe−iϕÞj0i

8Ωðg2c=g2 − 1Þ ð17Þ

þ iϕαe−iϕ

2Ω
ŜðξÞâ†D̂ðαe−iϕÞj0i; ð18Þ

which we use to calculate the Fisher information. After
some straightforward algebra, the contribution from the
dynamical phase (conventional metrology) becomes

Iϕ ¼ ϕ2

Ω2
jαj2; ð19Þ

and the contribution from the adiabatic change of the
eigenstates (critical metrology) becomes
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I ξ ¼ 1þ 2jαj2
8Ω2ð1 − g2c=g2Þ2

¼ g4

g4c

1þ 2jαj2
8Ω2e8ξ

: ð20Þ

Interestingly, the contribution from the critical metrology is
amplified by the use of excitations represented by jαj2. For
the term originating from the interference between conven-
tional and critical metrology, we obtain

I I ¼ jαj2ϕ sin½2ðarg α − ϕÞ�
Ω2ð1 − g2c=g2Þ

; ð21Þ

which can be negative (destructive) or positive (construc-
tive) depending on the final coupling gf. The three compo-
nents of the quantum Fisher information are shown in
Fig. 2. Specifically, we choose the simulation parameters
to highlight the moment when the contribution from critical
metrology overcomes the contribution from conventional
metrology.
It is worth noting that similar calculations can be

performed treating ω or Ω as a control parameter and
defining ωc or Ωc as critical frequencies. For instance, in
spin-orbit coupled quantum gases,Ω is typically the control
parameter [54]. Then, treating ω as unknown and perform-
ing analogous calculations, it is straightforward to show the
following relation:

Iω

IΩ
¼ Ω2

ω2
: ð22Þ

Optimal measurements.—Since the state from Eq. (16)
is Gaussian, we can expect that measuring an appro-
priate quadrature will yield a lot of information about
the unknown parameter and nearly saturate the Cramér-
Rao bound. The generalized quadrature is defined
as Q̂ ¼ X̂ cos θ þ P̂ sin θ, where X̂ ¼ ðâþ â†Þ=2 and
P̂ ¼ ðâ − â†Þ=2i. For the final state, the X̂ and P̂ quadrature
average values are

hX̂i ¼ jαj cosðϕ − arg αÞ expð−ξÞ;
hP̂i ¼ −jαj sinðϕ − argαÞ expðξÞ: ð23Þ

The generalized quadrature variance is

Δ2Q̂ ¼ expð−2ξÞ
4

cos2θ þ expð2ξÞ
4

sin2θ: ð24Þ

Using the Fisher information formula (6), we can calculate
the classical Fisher information for arbitrary parameters.
For the sake of brevity, however, we only provide the
expressions for the X̂ and P̂ quadratures. Assuming
arg α ¼ 0, we get

F X̂
Ω¼jαj2

�
g2

g2c
cosðϕÞe−4ξ−2ϕsinðϕÞ

�
2

4Ω2
þg4

g4c

1

8Ω2e8ξ
;

F P̂
Ω¼jαj2

�
g2

g2c
sinðϕÞe−4ξ−2ϕcosðϕÞ

�
2

4Ω2
þg4

g4c

1

8Ω2e8ξ
: ð25Þ

The above classical Fisher information saturates the
Cramér-Rao bound whenever the state is aligned with
the X̂ or P̂ quadrature, respectively. Although these two
measurements saturate the Cramér-Rao bound, they satu-
rate it only if the interference term in the quantum Fisher
information is equal to 0. Unfortunately, numerical calcu-
lations indicate that once the interference term is maximal,
the Cramér-Rao bound cannot be saturated by quadrature
measurements as illustrated in Fig. 2(b), where we compare
the quantum Fisher information and the quadrature-
optimized classical Fisher information. This means that
different (noncommuting) quadrature measurements are
required to extract the maximum amount of information
about the unknown parameter from the average and the
variance [see Eq. (6)] once the quantum state is not aligned
with the X̂ or P̂ quadratures. Nevertheless, even when the
interference term is maximal, a substantial amount of
information can be still extracted from appropriate quad-
rature measurement nearly saturating the Cramér-Rao
bound [see Fig. 2(b)].
Driven-dissipative case.—A driven-dissipative system is

a type of physical system that is subject to both external
driving forces and dissipative processes. A primary exam-
ple is a laser-pumped (driven) optical cavity that loses
photons (dissipation) through imperfect mirrors. These
systems are of particular interest because they can exhibit
complex and fascinating behavior, including the emergence
of nonequilibrium phenomena and nonequilibrium phase
transitions [55,56] which can also be harnessed in quantum
metrology [57], in particular, for joint estimation of loss
and nonlinearity in Kerr resonators [58].
Although the dissipation is typically considered a met-

rological disadvantage, in the driven-dissipative case, we
can expect that the ramp can be much faster as the

(a) (b)

FIG. 2. Quantum and classical Fisher information. (a) A
comparison among the contributions to the quantum Fisher
information for an initial state with α ¼ 0.5e−0.3i as a function
of g=gc. (b) Quantum (solid red line) and quadrature-optimized
classical Fisher information (dashed blue line). For these simu-
lations, we set Ω=ω ¼ 200.
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dissipation will eventually destroy nonadiabatic excita-
tions. In order to account for the dissipation, we use the
master equation in the Lindblad form

L½ρ̂� ¼ −i
h
Ĥ þ ηðĉeiωdt þ ĉ†e−iωdtÞ; ρ̂

i
þ κ
�
ĉ ρ̂ ĉ† −

1

2
fĉ†ĉ; ρ̂g

�
; ð26Þ

where Ĥ is the Hamiltonian from Eq. (8), κ denotes
excitation losses (dissipation), and η is the strength of
the drive with frequency ωd. Note that in the strong
coupling regime close to the critical point â is no longer
the correct jump or drive operator, and we have to use
modified jump operators ĉ [51,59–63]. After reaching the
steady-state solution (equilibrium state), the system is
characterized by

jψðtÞi ¼ ŜðξÞD̂ðjα̃j exp½−iðωdtþ φÞ�Þj0i; ð27Þ

where ω̃ ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2=g2c

p
¼ ωe2ξ is the resonance fre-

quency, jα̃j ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2=ðκ2 þ 4ðω̃ − ωdÞ2Þ

p
is a parameter-

dependent amplitude, and φ ¼ arctan½κ=2ðω̃ − ωdÞ� is the
phase difference between the drive and the response of the
system. Note that the state from Eq. (27) is pure, which is a
consequence of eliminating the spin degree of freedom
from the equations. In a more general case, when the spin
degree of freedom cannot be eliminated from the descrip-
tion, the excitations of the spin will be entangled with the
excitations of the harmonic oscillator. Consequently, the
driven-dissipative steady state will be described by a
density matrix for which an analytic description of different
Fisher information contributions is usually nontrivial.
Furthermore, for a driven-dissipative harmonic oscillator,
the system will oscillate with the frequency of the driving
force; therefore, the phase and thus the quantum Fisher
information will not grow with time. We interpret this as a
trade-off between reaching quickly the critical steady state
and increasing the Fisher information.
Following a similar derivation to that in the previous

section, the quantum Fisher information components for
the resonant driving ωd ≈ ω̃ become

Iϕ ¼ 16g4η2

ð1 − g2=g2cÞΩ4κ4
; ð28Þ

I ξ ¼ 1þ 8 η2

κ2

8Ω2ð1 − g2c=g2Þ2
; ð29Þ

I I ¼ 8g4η2 sin ½2ðωdtþ φÞ�
g2cκ3ð1 − g2=g2cÞ3=2Ω3

ð30Þ

and are analogous to the quantum Fisher information
components in the isolated system dynamics. The quantum

Fisher information in the driven-dissipative case is shown
in Fig. 3(b), where we compare it with the classical Fisher
information calculated for various measurements.
In analogy to closed system dynamics, we also consider

measurement of quadratures for quantum estimation. For
the steady state, it is straightforward to calculate the means

hX̂i ¼ jα̃j cos ðωdtþ φÞ expð−ξÞ; ð31Þ

hP̂i ¼ −jα̃j sin ðωdtþ φÞ expðξÞ; ð32Þ

and the variance

Δ2Q̂ ¼ expð−2ξÞ
4

cos2θ þ expð2ξÞ
4

sin2θ: ð33Þ

Using the classical Fisher information formula and assum-
ing resonant condition ω̃ ¼ ωd, one gets

F X̂
Ω ¼ ½ηκ cosðωdtÞ − 4ηω̃ sinðωdtÞ�2

κ4Ω2ð1 − g2c=g2Þ2
þ g4

g4c

1

8Ω2e8ξ
;

F P̂
Ω ¼ ½ηκ sinðωdtÞ − 4ηω̃ cosðωdtÞ�2

κ4Ω2ð1 − g2c=g2Þ2
þ g4

g4c

1

8Ω2e8ξ
; ð34Þ

which saturates the Cramér-Rao bound whenever the state
is aligned with X̂ and P̂ quadrature, respectively. Similar to
the closed system case, the maximum of the quantum
Fisher information occurs once the interference term is
maximal, which happens whenever ωdt ¼ π=4þ nπ
(assuming resonance condition φ ¼ 0), and the appropriate
quadrature measurement nearly saturates the Cramér-Rao
bound [see Fig. 3(b)]. Additionally, in Fig. 3(a), we show
the angle of the optimal quadrature measurement. Note that
in Fig. 3(b), it seems as if the Cramér-Rao bound can be
saturated for an arbitrary time. In fact, for the simulation

(a) (b)

FIG. 3. Quantum and classical Fisher information in the driven-
dissipative case. (a) The optimal quadrature angle as a function of
time. (b) Quantum (solid red line) and classical Fisher informa-
tion calculated using measurement of X̂ (dashed line), P̂ (dotted
line), and optimal quadrature (dashed blue line). The parameters
for these simulations are set to Ω=ω ¼ 100.5, η=ω ¼ 8, κ=ω ¼ 1,
g=gc ¼ 0.999.
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parameters we nearly saturate the Cramér-Rao bound and
the difference between classical and quantum Fisher
information is negligible.
Conclusions.—In this Letter, we proposed to combine

critical and quantum metrology into one effective protocol.
This can be intuitively understood as storing the informa-
tion about an unknown parameter both in the position of the
wave function in the phase space and its shape. As a
consequence, the quantum Fisher information attains an
extra term related to the interference between critical and
quantum metrology. We considered the case of closed
system dynamics, where the quantum Fisher information
grows in time at the expense of adiabatic time evolution,
and the case of driven-dissipative (open) dynamics, where
the quantum Fisher information does not grow in time, but
the adiabatic time evolution is not required. We also found a
relatively simple measurement scheme that relies on
measuring average values of quadratures and nearly satu-
rates the Cramér-Rao bound.
Ideal candidates for experimental realization of combin-

ing critical and conventional metrology are systems where
at least one (control) parameter can be tuned over a wide
range of values. Examples include noninteracting spin-orbit
coupled Bose-Einstein condensates [50,54] and spin-orbit
coupled Fermi gases [64], where the motional degree of
freedom represents a harmonic oscillator and the spin
degree of freedom represents a two-level system; quantum
simulators realizing the quantum Rabi model, where the
phonon mode represents a harmonic oscillator [65]; and
purely spin systems that can be mapped to the Lipkin-
Meshkov-Glick Hamiltonian [23,66,67]. In principle, light-
matter systems [63] could also be tested for combining
critical and conventional metrology protocols. This would
require, however, an extra step of turning off the light-
matter interactions converting thus virtual excitations
into real ones [68,69], which might constitute a serious
obstruction.
Future plans include additional exploitation of the Berry

phase to store the information about the unknown param-
eter. In such a case, the quantum Fisher information could
contain six terms: one related to conventional metrology,
one related to critical metrology, one related to geometric
metrology (Berry phase), and three interference terms. A
promising candidate is an extension to the Dicke model
which includes the term σ̂yðâ† − âÞ realizing squeezing in
the orthogonal direction to σ̂xðâ† þ âÞ. Also using
squeezed initial states might be an interesting direction
for a future investigation.
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