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A high-spin nucleus coupled to a color center can act as a long-lived memory qudit in a spin-photon
interface. The germanium vacancy (GeV) in diamond has attracted recent attention due to its excellent
spectral properties and provides access to the ten-dimensional Hilbert space of the I ¼ 9=2 73Ge nucleus.
Here, we observe the 73GeV hyperfine structure, perform nuclear spin readout, and optically initialize the
73Ge spin into any eigenstate on a μs timescale and with a fidelity of up to ∼84%. Our results establish
73GeV as an optically addressable high-spin quantum platform for a high-efficiency spin-photon interface
as well as for foundational quantum physics and metrology.
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Color centers are attractive candidates for light-matter
qubit interfaces, as required to realize a quantumnetwork [1–
4]. In such systems, electrons bound to the color center
potential provide a localized spin (ormatter) qubit,while spin
selective optical transitions enable spin initialization [5],
readout [6], and spin-photon entanglement [3]. Group-IV
split vacancy defects in diamond are particularly promising
owing to their excellent spin [7,8] and spectral [6,9] proper-
ties, even when incorporated into nanostructures [10]. The
group-IV defect of interest in this Letter, the germanium
vacancy (GeV), has demonstrated an optical life and coher-
ence time of τr ∼ 5.9 ns and T�

2;opt ∼ 9.5 ns [6] in addition to
electron spin coherence times exceeding ∼20 ms [11].
We can expand the quantum applications of color centers

by including hyperfine coupled nuclear spins with coher-
ence times that greatly exceed that of the electron [12]. For
diamond-based color centers, work has typically focused
on weakly coupled 13C spins [13,14] with several funda-
mental demonstrations regarding quantum networks having
been performed with them [15–18]. However, the non-
deterministic inclusion of the 13C isotope presents addi-
tional challenges with regards to locating 13C nuclear spins.
In contrast, each of the group-IV elements has at least one
isotope with a nuclear spin. High cooperativity between a
group-IV defect and a nanophotonic cavity allows for these
intrinsic nuclear spins to serve as quantum memories,
thereby bypassing the need to locate 13C spins. This has
been demonstrated for the 29SiV [19].

Of all the group-IV isotopes, including 13C, only 73Ge has
a high nuclear spin (I > 1=2). In fact, the I ¼ 9=2 73Ge spin
spans a ten-dimensional Hilbert space. Several proposed
schemes [20–22] map a two-level qubit onto a nuclear spin
qudit and leverage the redundancy of a large Hilbert space
for error correction. Such schemes could significantly
improve the storage time of a nuclear spin-based quantum
memory. In addition, high-spin nuclei are a potential platform
for investigating several fundamental questions in quantum
mechanics; from quantum chaos [23] to the reality of the
wave function [24], and as well as for quantum metrology,
where spin analogs to nonclassical states [25] of light may
improve sensor gain. However, the experimental study of
solid-state high-spin nuclei has been limited, with few
experimental platforms available [26–29]. This extends
further when considering optically active defects as other
centerswith access to a high-spin nucleus [30–33] have either
yet to demonstrate single defect optical addressability or do
not exhibit comparable spin and spectral properties.
In this Letter, we experimentally establish the negatively

charged 73GeV in diamond as a powerful, optically address-
able ten-level nuclear spin platform in the solid state. We
perform coherent population trapping (CPT) experiments to
resolve the hyperfine structure of the 73GeV. Using pulsed
CPT, we read out the nuclear spin state and observe rapid
nuclear spin diffusion that arises from nuclear spin non-
conserving optical relaxation. We leverage these relaxation
processes to perform fast, high-fidelity all-optical initial-
ization of the 73Ge spin into any of its eigenstates.
Figure 1(a) shows the level structure of the 73GeV where

j1i and j2i refer to the electron spin-down and spin-up
eigenstates of the ground state (GS) and jAi to the electron
spin-down eigenstate of the optically excited state (ES).
In an off-axis magnetic field, B0∦ [111] [see Fig. 1(b)], the
transition between j2i and jAi is weakly allowed, resulting
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in a Λ system. We perform CPT [5,41–43] by applying two
equal power (as imposed by the experimental setup [34])
lasers to simultaneously drive the j1i ↔ jAi and j2i ↔ jAi
(denoted A1 and A2) transitions with Rabi frequencies Ω1

andΩ2 as shown in Fig. 1(a). In a systemwhere no hyperfine
coupled nuclear spin is present and when the two laser
detuning, δ=2π¼0MHz [defined in Fig. 1(a) andRef. [34] ],
the system steady state is the so-called “dark state”; a
superposition of j1i and j2i that produces a dip in a photo-
luminescence excitation (PLE) spectrum [44]. A hyperfine
coupled nuclear spin introduces a nuclear state dependent
shift∼mωhf—for a nuclear state jmi—to the CPT resonance
such that it may no longer be at δ=2π ¼ 0 MHz. The
Hamiltonian that describes this interaction is

Hhf ¼
A⊥
2

ðSþI− þ S−IþÞ þ AkSzIz; ð1Þ

where Si (Ii) for i∈ fx; y; zg are the electron (nuclear) spin
operators, S� ¼ Sx � iSy (and likewise, I� ¼ Ix � iIy) and
Ak (A⊥) is the longitudinal (transverse) hyperfine coupling.
As the GS wave function parity is even, the isotropic Fermi
contact interaction dominates [5,45] and A ¼ Ak ∼ A⊥.
In Fig. 2(a), we plot the results of a CPT measurement on

a single 73GeV center. Note the single laser detuning and
sample temperature is ∼0 MHz and ∼25 mK in this and
all experiments described hereafter [34]. Furthermore, as
shown in Fig. 1(a), we perform CPT by sweeping δ and

changing frequency of both lasers. We observe ten B0

independent dips, split by ωhf=2π ¼ 33.81� 0.05 MHz,
that correspond to the ten 73Ge spin eigenstates. As with the
29SiV [46], ωhf depends on the strain and B0 orientation
[see Fig. 2(b)]. By fitting the measured ωhf to the GeV
Hamiltonian, we extract Ak=2π ¼ 36.98� 0.06 MHz assu-
ming an orbital Zeeman effect of ∼0.1γeB0=2 GHz [47].
The measured value is in good agreement with its ab initio
prediction in Ref. [45]. The strain dependence of ωhf arises
from strain induced mixing of the electron spin and orbital
degrees of freedom (see Ref. [34]) that occurs when
strain, jϵj is comparable to the spin-orbit coupling, λ ∼
165 GHz [48]. At low excitation powers, the CPT dip width
is given by ∝ T�−1

2 . In practice, we choose excitation powers
such that, Ω1;Ω2 ≫ T�−1

2 to ensure dip visibility [42]. This
lowers the CPT resolution by way of power broadening
(from several 100 kHz to several MHz) and thus, we cannot
measure the ∼kHz [45] magnitude shifts produced by the
second order hyperfine and quadrupole interactions.
We apply perturbation theory to the 73GeV hyperfine

structure (see Ref. [34]) to understand its strain dependence.
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FIG. 1. (a) Level structure of the 73GeV, with CPT driving
lasers denoted by the orange and red arrows. The optical Rabi
frequency between jAi and j1i and between jAi and j2i isΩ1 and
Ω2. The lasers have frequencies approximately equal to the GeV
zero-phonon line of ω0=2π ∼ 497 THz or ∼602 nm. Addition-
ally, c, δ, ωz, and ωhf refer to the vacuum speed of light, two laser
detuning, Zeeman splitting, and hyperfine splitting. (b) Diagram
of the GeV with the orientation of the magnetic field, B0, shown.
The angle between B0 and [111] is ∼54.7°. Ge, V, and C refer to
germanium, vacancy, and carbon, respectively.

(a)
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FIG. 2. (a) Coherent population trapping spectra with B0 varied
(gray text). The CPT power ranges from ∼220 to ∼420 nW or
equivalently, between 3 and 6 times the saturation power of A1—
which was measured to be psat ¼ 70� 5 nW. The data (gray
dots) is fit (colored lines) to ten copies of a Lorentzian, A=½1þ
ðδ − δ0Þ=γÞ2� þ Cðδ − δ0Þ þD [34]. Each copy is centered on a
particular dip that corresponds to one of the ten nuclear spin
eigenstates ordered j−9=2i to j9=2i from left to right. (b) Calcu-
lated strain dependence of the hyperfine splitting when B0k½001�
and A=2π ¼ 36.98 MHz. The orange point indicates the exper-
imentally measured hyperfine splitting.
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We find that the impact of strain on the effective transverse
hyperfine coupling is analogous to its impact on the electron
g factor [34,47,49]. More explicitly, and up to the second
order in ϵ, Aeff⊥ ¼ 4jϵjA⊥=λ. Given that the nuclear Zeeman
effect is weak, the hyperfine interaction entirely dominates
the dynamics of the nuclear spin.
We perform a pump-probe experiment with the pulse

sequence shown in Fig. 3(a). We apply a CPT-pump pulse
where δ is resonant with a particular nuclear state, followed
by a CPT-probe pulse where δ is varied for nuclear spin
readout [50]. The ∼520 nm pulse stabilizes the GeV charge
state [51]. The time resolved PLE, collected during the
probe pulse, is shown in the histograms in Figs. 3(b)
and 3(c). In Fig. 3(c), this is done with the pump-pulse
resonant with the nuclear spin eigenstate, j1=2i. The PLE
measured at the start of the probe pulse then verifies that the
nuclear spin was pumped into j1=2i. This is extended to the
entire nuclear spin Hilbert space as shown in Fig. 3(e)
where the different panels show initialization into all ten
nuclear spin eigenstates. The estimated initialization fidel-
ities for each eigenstate are plotted in Fig. 3(d) and are
computed from the data in Fig. 3(e). We estimate typical

fidelities of ∼65% with the highest fidelity of 84þ9
−8%

deduced for j3=2i.
The initialization mechanism is as follows: at the start of

a target-state-resonant CPT pulse, the nuclear spin is in
an arbitrary state and thus, the CPT pulse is not resonant
with the system. Consequently, optical excitation occurs
and the subsequent relaxation flips the nuclear spin. The
nuclear spin continues to flip, or diffuse, until it reaches the
target state upon which formation of the CPT dark state
terminates the process. This protocol has found applica-
tions in Overhauser field cooling of self-assembled
quantum dots [52] and nitrogen vacancy centers [53]. In
those systems, nuclear spin diffusion arises from the
transverse hyperfine interaction, A⊥ðSþI− þ S−IþÞ, which
generates electron-nuclear spin flip-flops. For highly
strained group-IV defects, ωz suppresses this term [54]
resulting in nuclear spin raising and lowering rates of
A2⊥Γr=4ω2

z and A2⊥Γr=4ηω2
z ∼ 10–100 Hz. Here, Γr is the

optical relaxation rate and η ≈Ω2
1=Ω2

2 is the branching
ratio. In Fig. 4(c), we plot the relationship between dark-
state formation rate and laser power during the nuclear spin
initialization protocol. To measure this, we modify the

520 nm CPT
pump

CPT
probe

(c)

(b)

(a)

(e)

(d)

FIG. 3. (a) Pulse sequence for a nuclear pump-probe experiment. CPTpump and CPTprobe refer to two CPT pulses—each pulse
consisting of two simultaneously applied lasers—where δ is either fixed and resonant to a CPT dip (pump) or varied during the
experiment (probe). Note, pump and probe exclusively refer to the effect of these pulses on the nuclear spin. (b) A histogram of the
photon arrival times measured during a nuclear pump-probe experiment. CPTpump is resonant to j1=2i while CPTprobe is resonant to
j5=2i. (c) Time resolved PLE intensity during a probe pulse. The CPTpump pulse is resonant to j1=2i as denoted by the solid gray line.
The dashed colored lines indicate the resonances of the other nuclear spin eigenstates. (d) The estimated initialization fidelity achieved
for each nuclear spin eigenstate. Here, the error bars refer to the 95% confidence interval. (e) CPT spectra measured by the nuclear
pump-probe technique with the PLE intensity measured during the first 250 ns of the CPTprobe pulse. The data (colored dots) have been
fit to the steady state of a CPT Lindbladian (gray lines; see Ref. [34]). The CPTpump frequency is indicated by the color of the dots, which
corresponds to the color of dashed lines in (c) with the associated nuclear spin state labeled adjacent to the data (gray text).
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nuclear pump-probe pulse sequence [see Fig. 3(a)] to a
diffuse-probe sequence [see Fig. 4(b)] wherein the two
laser detuning of the first pulse is δ=2π ¼ 0 MHz and
completely off-resonant to any nuclear spin eigenstate. This
pumps the nuclear spin into a mixed state from which
we may initialize a specific nuclear spin projection. By
fixing δ during the CPT-diffuse pulse, the state populations
of the resulting mixed state are the same between the
various experimental runs. We measure initialization rates
exceeding 100 kHz for all ten eigenstates, which is far
beyond what the transverse hyperfine could produce.

We extend our perturbative model of the 73GeV hyper-
fine structure to its dipole operators [34]. We find that the
difference in GS and ES strain modulates the nuclear
spin flipping transition strength. This is analogous to the
electron spin flipping transition, A2, its intensity being
strain modulated. The largest contribution to nuclear spin
diffusion is the difference in the GS and ES nuclear spin
quantization axes. As the hyperfine interaction dominates,
the nuclear spin quantization direction depends on that of
the electron and on the components of the hyperfine tensor.
Whereas the GS hyperfine tensor is dominated by the
isotropic Fermi contact interaction, the ES hyperfine tensor
is expected to be dominated by the anisotropic dipolar
term [55]. This, in combination with differing GS and
ES g tensors results in different GS and ES nuclear spin
quantization axes, thereby increasing the likelihood of
relaxation induced nuclear spin flips.
We construct a rate model of the nuclear spin pumping

process [34], to gain insight into its excitation power
dependence [see Fig. 4(a)]. In particular, we note that
rather than saturating, the pumping rate decreases after
some optimum power. This is a consequence of power
broadening [see Fig. 4(c)]. Wider CPT dips suppress
optical excitation and slow the nuclear spin diffusion
process. Deviation of the rate model from the experiment
is due to sensitivity of the modeled nuclear spin quantiza-
tion axis to the unknown value of the ES hyperfine and in
addition to errors and fluctuations in δ for both CPT pulses
in the several hours of averaging required to perform the
experiment.
Given the nuclear spin diffusion during the probe pulse

[see Fig. 3(c), where the remaining nine dips appear after
the CPT-probe pulse is applied for several μs], the fidelity
estimates shown in Fig. 3(d) are conservative. Additionally,
PLE intensity drift during the measurement further limits
the accuracy of fidelity estimation. The low initialization
fidelity into j−9=2i is likely due to the difficulty in
ascertaining the corresponding δ given its low CPT contrast
and in addition to fast nuclear spin diffusion away from
j−9=2i during the CPT-probe pulse. Fidelity is limited by
errors in δ—an effect amplified by power broadening. The
fundamental limit to fidelity is the probability of re-
excitation from the dark state, given by the ratio of the
optical lifetime and the electron T�

2 [34]. The initialization
fidelity stands to be improved through the optimization of
T�
2 by isotopic purification of the diamond and by aligning

B0 to [111] [7,11] while minimizing errors in δ.
CPT-based nuclear spin pumping [56] provides access to

nuclear spin systems where the difference between the GS
and ES hyperfine splittings does not exceed the optical
linewidth [57] and presents less overhead than traditional
initialization schemes such as electron initialization fol-
lowed by a SWAP gate [19], dynamic nuclear polari-
zation [58], or measurement-based initialization [59].
Moreover, the ability to polarize into any nuclear eigenstate
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FIG. 4. Nuclear spin initialization time. (a) The pulse sequence
used to measure the nuclear spin initialization time. Here,
CPTdiffuse refers to a completely off-resonant, δ ¼ 0 MHz CPT
pulse. (b) The power dependence of the nuclear spin initialization
rates for each nuclear spin eigenstate. Here, the laser power
is expressed in terms of the A1 saturation power, psat ¼
70� 5 nW. The colored points denote the measured data while
the gray dashed lines plot the theoretical initialization rate
extracted from a rate model. (c) Schematic diagram of the exci-
tation probability, Pexc, at the beginning of a CPTpump=CPTprobe

pulse. Here, δ is set to pump the nuclear spin eigenstate adjacent
to the initial state of the system resulting in a CPT detuning of
ωhf from the resonance. Note, when the CPT power is large,
increasing it further reduces the excitation rate as the dip broadens
and consequently suppresses nuclear spin diffusion.
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allows one to bypass rf control of the nuclear spin during
initialization. This is highly desirable given the large, ten-
dimensional nuclear spin Hilbert space and the low 73Ge
gyromagnetic ratio, γn ∼ 1.5 MHz=T. For example, assum-
ing a high rf power to magnetic field conversion efficiency
as achieved in Ref. [60] and a dilution refrigerator power
budget of 100 μW, we would expect nuclear Rabi frequen-
cies on the order of ∼100 Hz and significantly lower
initialization rates. In contrast, we show μs-timescale
initialization rates comparable to that of the electron spin
(see Ref. [34]). On the other hand, the fast nuclear spin
diffusion makes nuclear spin readout with CPT difficult, as
the number of collected photons per shot is ≪ 1. However,
we expect that the nuclear spin diffusion rate may be
lowered by aligning B0 with the defect axis and, in doing
so, improve CPT-based nuclear spin readout. Additionally,
alternative readout mechanisms exist. Namely, a nuclear
spin conditional operation on the electron and its sub-
sequent readout [19,61], which may also enable single-shot
nuclear spin readout.
The long coherence times of solid-state nuclear spins [12]

make them an invaluable resource for color-center-
based spin-photon interfaces, which has motivated recent
investigations into the intrinsic nuclear spins of group-IV
defects [19,55,57]. In this Letter, we observe the hyperfine
structure of the 73GeV and measure Ak ∼ 37 MHz. Further-
more, we demonstrate optical readout and initialization of
the 73Ge spin, quickly and without requiring microwave or
rf magnetic fields. This constitutes a feature that signifi-
cantly improves the feasibility of addressing the nuclear
spin, given its large Hilbert space and low gyromagnetic
ratio. Our work will fundamentally enable a near-term
demonstration of coherent control of the 73Ge spin, either
via all-optical [62] or magnetic methods. In the long term,
the 73GeV system could be deployed as an optically
accessible qudit for quantum information processing [63],
as a platform to explore quantum chaos [23], or to generate
nonclassical spin states of metrological interest [25].
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