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Non-Markovian processes may arise in physics due to memory effects of environmental degrees of
freedom. For quantum non-Markovianity, it is an ongoing debate to clarify whether such memory effects
have a verifiable quantum origin, or whether they might equally be modeled by a classical memory. In this
contribution, we propose a criterion to test locally for a truly quantum memory. The approach is agnostic
with respect to the environment, as it solely depends on the local dynamics of the system of interest.
Experimental realizations are particularly easy, as only single-time measurements on the system itself have
to be performed. We study memory in a variety of physically motivated examples, both for a time-discrete
case, and for time-continuous dynamics. For the latter, we are able to provide an interesting class of non-
Markovian master equations with classical memory that allows for a physically measurable quantum
trajectory representation.
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Introduction.—Applying quantum technologies to real-
world problems requires a fundamental understanding of
all underlying physical processes. Possible quantum advan-
tages rely on our ability to cope with noise and dissipation,
induced by the environment [1–7]. A detailed modeling of
environmental impacts entails memory effects, showing
non-Markovianity [8–15]. This requires advanced methods
to describe quantum devices, yet non-Markovianity might
also help to mitigate errors [16–18].
In recent years, it has become evident that non-

Markovianity in quantum dynamics need not have a
quantum origin [19–22]. The ability to distinguish memory
effects arising from the coupling to an environmental
quantum system from those of classical nature is of
fundamental importance. On the one hand, it will help
to improve the performance of quantum devices, as error-
correction schemes differ in the two cases. On the other
hand, such studies are inevitable when trying to prove the
quantum nature of unfathomable degrees of freedom such
as gravity [23,24].
Clearly, full operational access to the environment

reveals its quantum nature, a situation hardly met in
experiments. Indeed, standard open system theory aims
at an effective dynamical description of the system of
interest S, without any explicit reference to the environment
E. Accordingly, we assume throughout that information is
available frommeasurements on S only. The question arises
whether such local information suffices to distinguish
memory effects induced by an unknown quantum envi-
ronment from those that may arise classically.
Recently, this question was addressed in the framework

of process tensors [25–28]. A process tensor bears all
information about the statistics of any possible sequence of

measurements that could be performed locally on S.
The classicality of the environmental memory can then
be related to the separability of the process tensor [28].
While the process tensor is an elegant object from a theory
point of view, its experimental determination is certainly
challenging since it requires full multitime statistics of the
process. By contrast, the results of this Letter are based on
the system dynamics alone, and, thus, are both concep-
tually and experimentally more easily accessible.
We should note that there is an interesting angle to

our approach, relating it to the existence of physically
measurable quantum trajectories. We will explore these
connections later, establishing non-Markovian master
equations that allow for such a trajectory representation.
Formally, we define a dynamics D on S to be a family of

completely positive trace-preserving (CPT) mapsD ¼ ðEnÞ
mapping the system state from the initial time t0 to time tn.
This definition covers every physically valid evolution
where the system and its environment are initially in a
product state (uncorrelated). To determine the dynamics,
channel tomography has to be performed for each En, but
no multitime statistics is needed. Besides this experimental
advantage of the approach, it conforms very well with the
traditional open quantum system frameworks based on
dynamical maps and master equations.
In this Letter, we show how to disclose a truly quantum

memory for non-Markovian dynamics, based on such local
information. The proposed witness thus locally reveals a
new, additional property of quantum non-Markovian
dynamics, which is hidden for all known measures of
non-Markovianity.
Classical and quantum memory.—Let us illustrate the

idea with a simple toy model of a two-step dynamics D,
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given by the CPT maps

E1½ρS� ¼ trE
h
U1ðρS ⊗ ρEÞU†

1

i
;

E2½ρS� ¼ trE
h
U2U1ðρS ⊗ ρEÞU†

1U
†
2

i
; ð1Þ

where ρS and ρE are the initial states of system S and
environment E, respectively. The global dynamics are
mediated by unitaries U1;2. We let both, S and E be qubits,
and set ρE ¼ j0ih0j. Crucially, for our toy model we fix the
second unitary to be the inverse of the first, i.e., U2 ¼ U†

1.
Accordingly, the second CPT map is trivial, E2 ¼ 1. As for
U1, we consider two different choices:

Udephase
1 ¼ exp½−ifðσx ⊗ σxÞ�;
Udamp

1 ¼ exp½−igðσþ ⊗ σ− þ σ− ⊗ σþÞ�; ð2Þ

with real parameters f and g determining the strength of the
map [29]. The first leads to a partial dephasing in the x
basis, the second choice induces a partial amplitude damp-
ing (see Fig. 1). Almost any pure initial state of S gets
entangled with the environment in this first step, and
therefore mixed. The second interaction then rewinds these
correlations and the system returns to its initial state. Thus,
we witness non-Markovian dynamics according to all
common criteria [29]. In this global picture it is fair to
say that the repeated interaction with the same environ-
mental quantum system leads to non-Markovianity.
Clearly, E is that (quantum) memory.
However, once we look at the local dynamics D alone—

meaning that we know the maps ðE1; E2Þ but we are
ignorant about the global dynamics including E—the
analysis is different: any single qubit dephasing dynamics,

no matter what its true physical origin is, is indistinghu-
ishable from a random unitary evolution [60,61]. Since
classical memory suffices to keep track of the random
choice of the unitary, no quantum environment E is
needed [29].
In the case of the partial amplitude damping, the situation

is less obvious. Remarkably, we will present a criterion
below which verifies that the amplitude damping example
indeed requires quantum memory, i.e., cannot be modeled
by classical memory. To proceed, we need to define
properly what we mean by classical memory:
Definition 1.—Given two CPT maps E1 and E2. The

dynamics D ¼ ðE1; E2Þ can be realized with classical
memory, if and only if there is at least one Kraus
decomposition fMig of E1½ρS� ¼

P
i MiρSM

†
i and suitable

CPT maps Φi such that

E2½ρS� ¼
X
i

Φi

h
MiρSM

†
i

i
: ð3Þ

Otherwise the dynamics is said to require truly quantum
memory.
Let us elaborate why this definition embraces the idea of

dynamics with classical memory. Equation (3) describes a
sequential process. The Kraus decomposition fMig can be
seen as a local measurement on S which on average realizes
the first map E1. The second step with CPT map Φi is
conditioned on that outcome i of the first measurement.
Crucially, the label i is classical data, storable in a classical
memory. By contrast, for a dynamics that cannot be written
in the form above, a persisting quantum environment has to
be present throughout both dynamical steps, as suggested
by our toy model.
Further remarks: The definition of a dynamicsD requires

that E2 is a CPT map from the initial time t0 to time t2. By
contrast, the average map from the intermediate time t1 to
t2, given by E2;1 ¼ E2∘E−1

1 , is in general not CPT (see also
Fig. 1). Moreover, for the actual implementation of the
measurement fMig and the channels Φi, independent
ancillary quantum systems might be necessary. However,
these can always be discarded after use, so they do not serve
as a memory.
Markovian quantum dynamics satisfy Eq. (3) trivially

withΦi ¼ Φ ¼ E2;1, there is no memory at all. Any random
unitary process (e.g., the dephasing in Fig. 1) can be written
in the form of Eq. (3) of classical memory, as explained
earlier. By contrast, the amplitude damping toy model
cannot be realized in this way, as will follow from our
theorem below.
As the main result of this Letter, we next provide a

sufficient criterion for a locally known dynamics D ¼
ðE1; E2Þ to not be realizable by means of classical memory
according to Definition 1. Its relevance is twofold. First, if
the criterion holds, we have proof of a persistent quantum
environment E. Second, note that Definition 1 is the most

FIG. 1. Image of the Bloch sphere under the intermediate
dephasing and damping dynamics, respectively. Both dynamics
are non-Markovian as witnessed by the expansion during the
second step. Dephasing is realizable with only classical memory,
while amplitude damping is not. For this example, f ¼ 0.64 and
g ¼ 0.89 in Eq. (2).
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general physically measurable pure-state quantum trajec-
tory representation of the given dynamics D. Disclosing
quantum memory, therefore, rules out the existence of such
quantum trajectories. We will elaborate on these issues in a
time-continuous limit in more detail below.
Criterion.—For the criterion, we need the concept of

entanglement of assistance. Consider a bipartite quantum
state χSA of system S and ancilla A (not to be confused with
the environment E). Let E½χSA� be an entanglement mono-
tone (e.g., entanglement of formation or concurrence) [62].
The entanglement of assistance E♯ is then [63,64]

E♯½χSA� ≔ max
fpk;jψkig

X
k

pkE½jψki�; ð4Þ

i.e., the average entanglement maximized over any pure-
state decomposition of χSA. Now assume that χSA describes
the Choi state of the map E acting on the system S [65], i.e.,

χSA½E� ¼ χ½E� ¼ ðE ⊗ 1Þjϕþihϕþj; with

jϕþi ¼ 1ffiffiffi
d

p
Xd−1
j¼0

jjSijjAi; ð5Þ

where d is the dimension of the system and the jjS;Ai form
an orthonormal basis in S and A, respectively. We find the
following theorem:
Theorem 1.—Let E1 and E2 be two CPT maps. If for the

Choi states χ1 and χ2 of E1 and E2 we observe

E♯½χ1� < E½χ2�; ð6Þ

the dynamics D ¼ ðE1; E2Þ requires quantum memory.
Proof.—Suppose the dynamics D ¼ ðE1; E2Þ only

requires classical memory as defined in Definition 1.
Then the local measurement fMig implementing the
channel E1 on S decomposes the corresponding Choi state
χ1 into the pure-state decomposition fpi; jψ iig with
jψ ii ¼ ðMi ⊗ 1Þjϕþi= ffiffiffiffiffi

pi
p

, jϕþi as in Eq. (5), and pi

being the probability for outcome i. The average entangle-
ment in this decomposition fpi; jψ iig is upper bounded by
the entanglement of assistance:

E♯½χ1� ¼ max
fpk;jψkig

X
k

pkE½jψki� ≥
X
i

piE½jψ ii�: ð7Þ

Local quantum channels can only reduce the entanglement
[62]. Therefore, defining ρi ≔ ðΦi ⊗ 1Þjψ iihψ ij, where Φi
is a CPT map that can depend on the previous outcome, we
have

X
i

piE½jψ ii� ≥
X
i

piE½ρi�: ð8Þ

The decomposition fpi; ρig represents the Choi state χ2 of
the second map E2, i.e.,

P
i piρi ¼ χ2. However, the

average entanglement in this decomposition is lower
bounded by the entanglement of the state χ2 itself,

X
i

piE½ρi� ≥ min
fpk;jφkig

X
k

pkE½jφki� ¼ E½χ2�; ð9Þ

where the minimization runs over all pure-state decom-
positions of χ2. ▪
Discrete example.—First, we show a two-step dynamics

that, upon changing a parameter, can be tuned from the case
of verifiable quantum memory according to Theorem 1 to
the case of classical memory, obeying a representation as in
Definition 1. We consider a map Ap representing a thermal
amplitude damping of a single qubit given by Kraus
operators

M1 ¼ z−
ffiffiffiffi
p

p
σ−; M2¼ z−ð

ffiffiffiffiffiffiffiffiffiffi
1−p

p
σþσ−þσ−σþÞ;

M3 ¼ zþ
ffiffiffiffi
p

p
σþ; M4¼ zþðσþσ−þ

ffiffiffiffiffiffiffiffiffiffi
1−p

p
σ−σþÞ; ð10Þ

where the strength of the channel is given by p∈ ½0; 1� and
z� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�β

p
, with β a dimensionless inverse temper-

ature. The zero-temperature amplitude damping channel
with ground state j0i as its fixed point emerges as β → ∞.
At finite temperature, M3 and M4 model absorption from a
thermal bath.
We consider a sequence of two maps of this class, i.e., a

dynamics D ¼ ðE1; E2Þ ¼ ðAp1
;Ap2

Þ, with pn the damp-
ing strength at time tn. For the sake of this example, we fix
the inverse temperature β ¼ 0.51, the first damping
strength p1 ¼ 0.9, and investigate the nature of the required
memory as a function of the second strength p2. We choose
the concurrence C as the entanglement monotone E in
Eq. (4) and write C♯ for the concurrence of assistance. In
Fig. 2 we plot C♯½χ1� − C½χ2� and satisfy the criterion for
p2 < 0.11 (orange region). Thus, the corresponding non-
Markovian dynamics requires quantum memory. For
p2 > 0.86, the dynamics can be modeled by classical
memory (blue region). We provide an explicit representa-
tion as in Definition 1 (see caption of Fig. 2 for details).
Time-continuous example.—Let us apply the criterion of

Theorem 1 to the zero-temperature non-Markovian ampli-
tude damping master equation,

ρ̇ ¼ Lt½ρ� ¼
γ−ðtÞ
2

ð½σ−ρ; σþ� þ ½σ−; ρσþ�Þ: ð11Þ

Here γ−ðtÞ is the instantaneous damping rate which in the
non-Markovian case changes sign over time [29].
For the dynamics resulting from this master equation, we

find that the concurrence of assistance of the Choi state is
equal to the concurrence (of formation) for all times,
C♯½χðtÞ� ¼ C½χðtÞ�, ∀ t. In the non-Markovian case, C is
a nonmonotonous function. Thus, there are times t2 > t1
such that C♯½χðt1Þ� < C½χðt2Þ�, which shows by virtue of
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Theorem 1 that zero-temperature non-Markovian amplitude
damping cannot be realized by means of classical memory.
However, heuristically extending the scenario to a

thermal bath, one finds that for sufficiently high temper-
atures the criterion is no longer violated [29]. This does not
necessarily mean that the dynamics can be explained by
classical memory, but it shows that at higher temperatures it
becomes harder to locally verify the quantum nature of the
memory.
Dynamics with classical memory.—Disclosing quantum

memory for time-continuous dynamics requires the con-
sideration of the dynamical map at two distinct times, as
seen in the previous example. However, to ensure that
classical memory is sufficient, one has to explicitly provide
a representation in terms of the time-continuous generali-
zation of Definition 1.
For a dynamicsD ¼ ðEnÞNn¼1, with N discrete time steps,

a representation with classical memory takes the form

En½ρ� ¼
X

i1;…;in

Mði1;…;in−1Þ
in

…Mði1Þ
i2

Mi1ρM
†
i1
Mði1Þ†

i2
…

…Mði1;…;in−1Þ†
in

; 1 ≤ n ≤ N; ð12Þ

where the superscripts indicate that the measurement
operators at a certain step can depend on all previous
outcomes. For suitably chosen measurements fMing, this
construction allows for a time-continuous limit.
Equation (12) describes the most general form of a

physically measurable pure-state trajectory representation
of a dynamics. Hence, for a dynamics which requires truly

quantum memory according to Theorem 1, a pure-state
unraveling is immediately ruled out. On the other hand,
a non-Markovian dynamics which can be written in this
way, i.e., which only requires classical memory, admits a
pure-state trajectory representation by construction. This
clarifies that the often debated existence of physically
measurable non-Markovian quantum trajectories depends
on the classicality of the memory needed to implement the
dynamics [29]. In the following, we provide some time-
continuous examples.
As mentioned earlier, any dynamics with random unitary

representation can be realized with classical memory (see
also Refs. [66,67]). Another simple case is a probabilistic
mixture of multiple Markovian dynamics. The prime exam-
ple is the master equation of eternal non-Markovianity
requiring two bits of classical memory [20]. There, the
outcome of an initial random choice with probabilities pi
determines which of three different Markovian dynamics
with generators Li is implemented for all times, Et ¼
p1etL1 þ p2etL2 þ p3etL3 . This dynamical map is in general
non-Markovian with respect to the CP-divisibility criterion
[20,21,68,69]. Nevertheless, it has an obvious pure-state
trajectory representation. Further dynamics with classical
memory are given by quantum semi-Markov processes,
where the application of the next step depends on a (classical)
waiting time distribution [22,70–73].
The richness of dynamics with classical memory is,

however, far greater. Equation (12) can serve as a starting
point to derive new non-Markovian master equations with
classical memory based on a quantum-jump-inspired tra-
jectory representation, as we show next.
We use a qubit and start from a standard quantum jump

trajectory which describes amplitude damping (jump oper-
ator σ−). The classical memory keeps track of whether the
jump has already occurred. If so, the jump operator is
replaced by σþ. One bit of classical memory is sufficient for
the implementation of this scheme. Integrating the succes-
sion of maps over all possible jump times yields the non-
Markovian time-local master equation

Lt½ρ� ¼
1

2

X
k¼1;2

γkðtÞ
�h

Lk; ρL
†
k

i
þ
h
Lkρ; L

†
k

i�
; ð13Þ

with

γ1ðtÞ ¼
κðκt − 1Þ
2ðκt − eκtÞ ; γ2ðtÞ ¼

κðeκt − 1Þ
8ðeκt − κtÞ ;

L1 ¼ σ−; L2 ¼ σz:

A detailed derivation is presented in the Supplemental
Material [29]. Let us stress that the non-Markovian master
equation (13) has a physically realizable, measurable
quantum jump representation by construction.

FIG. 2. Entanglement difference as a function of the strength
parameter p2 of the second dynamical step of a thermal amplitude
damping channel (see text, other parameters p1 ¼ 0.9 and
β ¼ 0.51). For p2 < 0.11, the criterion in Theorem 1 is satisfied
(orange) and the dynamics requires quantum memory (QM). For
p2 < p1, the damping gets partially rewound and the dynamics is
non-Markovian. Yet for 0.86 ≤ p2 < p1 (solid blue) we can
explicitly construct a representation as in Definition 1, and
therefore only classical memory (CM) is needed—see Supple-
mental Material [29]. For p2 ≥ p1 the dynamics is Markovian
and thus does not require memory at all (blue hatched region). For
0.11 ≤ p2 < 0.86 (white) we cannot decide whether truly quan-
tum memory is required.
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It is interesting to note that the dynamics given by
Eq. (13) is P-indivisible and thus non-Markovian in a
stricter sense than the P-divisible master equation of eternal
non-Markovianity discussed earlier.
Conclusion.—Non-Markovian quantum dynamics is

associated with memory effects. However, this memory
is not necessarily provided by environmental quantum
degrees of freedom but may be classical. In this Letter,
we investigate the nature of that memory from a local
viewpoint. Focusing on the dynamics in the open system
alone, we make no assumption about the physics of the
environment.
We start from a definition for a dynamics requiring

classical memory only. As the main result, we then present
a criterion in terms of an inequality whose satisfaction rules
out any such realization of the given dynamics. Crucially,
this criterion depends solely on information about the
single-time local dynamics of the open system, no multi-
time statistics is required. Its tomography and thus the
disclosure of environmental quantum memory is in exper-
imental sight.
We illustrate the concept with several discrete and

time-continuous examples with and without truly quan-
tum memory, including cases which can be tuned
between the two regimes. In particular, we show how
to construct a class of non-Markovian time-local master
equations admitting a pure-state quantum jump trajectory
representation based on classical memory. No such
unraveling can exist for a dynamics which requires truly
quantum memory.
Our criterion is sufficient but not necessary—refinements

are thus desirable (see Fig. 3). The presented concepts serve
as an immediate starting point for further investigations,
which include characterizing the size of the quantum or
classical memory, criteria for unital dynamics, and the
construction of physically realizable non-Markovian trajec-
tories of the diffusive type. More generally, our Letter shows
that an environment-agnostic perspective can be a valuable

tool for characterizing environmental properties without
making prior assumptions about the underlying physics.
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