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A crossover from a non-Gaussian to Gaussian subdiffusion has been observed ubiquitously in various
polymeric and molecular glassformers. We have developed a framework that generalizes the fractional
Brownian motion model to incorporate non-Gaussian features by introducing a jump kernel. We illustrate
that the non-Gaussian fractional Brownian motion model accurately characterizes the subdiffusion
crossover. From the solutions of the non-Gaussian fractional Brownian motion model, we gain insights
into the nature of van Hove self-correlation in non-Gaussian subdiffusive regime, which is found to exhibit
exponential tails, providing first such experimental evidence in molecular glassformers. The validity of the
model is supported by comparison with incoherent quasielastic neutron scattering data obtained from
several molecular and polymeric glassformers.
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The problem of diffusion mechanism in supercooled
liquids and glasses remains an essential component in the
theory of glass transitions [1–4]. The diffusion processes in
thesemedia categorically violate the basic tenets of Brownian
motion such as Fickianity [linear time dependence of mean-
squared displacement (MSD)] andGaussianity (displacement
distribution is Gaussian). However, such violations are often
sensitive to the length and timescales explored and therefore
inevitably lead to crossovers in diffusion mechanisms. These
crossovers have now been experimentally observed in a wide
range of systems, including colloids [5–8], molecular and
ionic liquids [9,10], and polymers [4,11–13]. Colloidal
suspensions exhibit a crossover from non-Fickian to
Fickian regime while yet remaining non-Gaussian [5–8].
On the other hand, molecular and polymeric glassformers
ubiquitously display a crossover from non-Gaussian to
Gaussian diffusion while yet being non-Fickian (subdiffu-
sive) [4,9–13]. While the latter has been observed and
investigated through various simulations [4,9,14] and experi-
ments [4,9–12,14], a first principles model has not yet been
devised, which has precluded achieving a comprehensive
understanding of the underlying basis for non-Gaussianity
across these crossovers. Glassformers exhibit a distinct
exponential decay in their displacement distribution
[7,15,16], a feature observed in various complex fluids such
as colloidal suspensions [5–7], Si atoms in a silica melt
[16,17], and in Lennard-Jones particles [16,18]. This behav-
ior is now understood to be a result of large deviations and
randomization of number of jumps in particle displacement
[19].However, the precise nature of displacement distribution
in glassformers undergoing subdiffusion crossover has not
been investigated yet.

In this Letter, we develop a model for non-Gaussian
fractional Brownian motion (nGfBm) and show the emer-
gence of subdiffusion crossover through it. Further, our
model also demonstrates that in the non-Gaussian sub-
diffusive regime, displacement distribution clearly exhibits
an exponential tail. We use the nGfBm model to analyze
incoherent quasielastic neutron scattering (IQENS) data of
molecular and polymeric glassformers, including ethylene
glycol (EG) and its deep eutectic solvents, as well as MD
simulation data of pure EG. Our findings provide the first
experimental evidence of exponential tails in the displace-
ment distribution of molecular glassformers and also
demonstrate the applicability of the model to other systems
studied in literature [9,10].
The diffusion mechanisms and the crossovers therein can

be characterized by investigating van Hove self-correlation
function Gsðr; tÞ or its time Fourier transform, self-
intermediate scattering function (SISF), IsðQ; tÞ. In glass-
formers the SISF is typically found to follow a stretched
exponential function, IsðQ; tÞ ¼ expf−½t=τsðQÞ�βg, where
the stretching parameter β characterizes the deviation from
an exponential relaxation profile and τs is the characteristic
relaxation time. Various experimental [4,10,12–14] and
computational [9,12,14] studies show that polymer and
molecular glassformers exhibit a crossover in τs vs Q
relationship near the first maximum, Q0 of the structure
factor. Precisely speaking, forQ < Q0, τðQÞ ∼Q−2=β, while
for Q > Q0, τðQÞ ∼Q−2. At low Q values (< Q0), juxta-
posing the relationship τs ∼Q−2=β with the stretched expo-
nential decay, inevitably leads to a Gaussian subdiffusion
with a MSD, hδr2ðtÞi ∼ tβ. However, in the high Q regime
(> Q0), where τs ∼Q−2, the diffusion mechanism cannot be
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described within the Gaussian approximation [4,9,13].
Therefore, this crossover in the behavior of relaxation time
has been attributed to a transition from Gaussian (for
Q < Q0) to a non-Gaussian (for Q > Q0) subdiffusion in
these media [4,9,10]. In what follows, we present a char-
acterization of the subdiffusion crossover by formulating a
Fokker-Planck equation for the nGfBm model. Our results
demonstrate that the emergence of the subdiffusion cross-
over is solely due to the nonlocality induced by jump kernel
in the model.
The two salient features of glassformers are the sub-

diffusive behavior due to strong memory effects and non-
Gaussianity arising out of large jumps. To develop a physical
model to describe a crossover from non-Gaussian to
Gaussian subdiffusion, it is essential to decouple these
two features. Subdiffusive phenomena that originate due
to a system’s strong memory can be modeled using the
framework of fractional Brownian motion (fBm). The
standard fBm, BαðtÞ, is a self-similar centered Gaussian
process with an autocorrelation hBαðt1ÞBαðt2Þi ¼ ðtα1 þ tα2−
jt1 − t2jαÞ, where α∈ ð0; 2Þ. We define the particle displace-
ments in these glassy media to be driven by the standard
fBm, according to dxðtÞ ¼ ffiffiffiffiffiffiffiffiffi

2Dα

p
dBαðtÞ, ð0 < α < 1Þ,

where Dα is the fractional diffusion constant with dimen-
sions m2=sα. Using the recent developments on calculus
for a fBm-driven process [20], the Fokker-Planck equa-
tion for particle displacements can be obtained to be
½∂Gsðx; tÞ=∂t� ¼ αtα−1Dα½∂2Gsðx; tÞ=∂x2� [21]. The solu-
tions of this equation [29] for the initial condition,
Gsðx; 0Þ ¼ δðxÞ, yields Gsðx; tÞ ¼ ð4πDαtαÞ−1 exp ½−x2=
ð4DαtαÞ�. This equation describes a Gaussian subdiffusion
process where the MSD is 2Dαtα and all the higher
cumulants of displacements are zero. In order to incorporate
the non-Gaussian features in the standard fBm model, we
propose the following equation for non-Gaussian fBm
(nGfBm):

∂Gsðx; tÞ
∂t

¼ αtα−1
Z

∞

−∞
dx0Λðx − x0Þ ∂

2Gsðx0; tÞ
∂x02

; ð1Þ

whereΛðx − x0Þ is the jump kernel that contains information
about the spatially nonlocal nature of the diffusion process,
allowing one to account for large amplitude jumps that are
the main source of non-Gaussianity in glass dynamics
[30,31]. Using ΛðxÞ ¼ DαδðxÞ allows for only local or
infinitesimally small displacements and therefore reprodu-
ces the standard fBm process. The general solutions to
Eq. (1) are readily obtained in the Fourier space using the
SISF, Isðk; tÞ ¼ I0ðkÞ exp ½−k2ΛðkÞtα�, where ΛðkÞ and
I0ðkÞ are the Fourier transforms of ΛðxÞ and Gsðx; 0Þ,
respectively.
The general form of jump kernel in our Letter should

exhibit transient non-Gaussian effects at short distances,
and revert to Gaussian behavior at long distances. To be
more precise, we consider a characteristic length scale for

jump processes, x0. The jump kernel induces non-Gaussian
behavior for (x ≪ x0) and smoothly transitions to the
Gaussian regime for (x ≫ x0). In the Fourier domain, these
conditions can be simplified into two specific limiting

rules: ΛðkÞ⟶kx0→0ðx20=ταj Þ and ΛðkÞ ⟶kx0→∞ðk−2=ταj Þ [21].
Combining these rules, we propose the general jump kernel
as a series expansion,

ΛðkÞ ¼ k−2

ταj

X∞
n¼1

cnðkx0Þ2n; ð2Þ

where only the even terms are considered owing to the
isotropic nature of the diffusion problem. The choice of the
coefficients fcng is dictated by conditions that the sum
converges to unity for kx0 → ∞ and is proportional to x20
for kx0 → 0. Various choices fcng and their respective
jump kernels are listed in Table S1 [21]. Notable choices
include ð−1Þn−1 and ð−1Þn−1=n!, which correspond to
symmetric exponential and Gaussian jump kernels that
are also referred to as Model A and B in the list. Comparing
the SISF of nGfBm from Eq. (1) with the e−½t=τðkÞ�α , we get
τðkÞ ∼ τj½k2ΛðkÞ�−1=α. Figure 1 shows the behavior of the
dispersion relationship for five different jump kernels
(Models A–E) listed in Table S1 (refer to [21]), showing
a clear evidence of transition from Gaussian to non-
Gaussian behavior.
The exponential nature of displacement distribution

emerges from the limiting behavior ΛðkÞ ⟶kx0→∞ðk−2=ταj Þ.
The inverse Fourier transform in this limit is
ΛhðxÞ ∼ ðx0=2ταj Þe−jxj=x0 . It can be explicitly shown that
this limiting form of jump kernel leads to an exponential
behavior in the displacement distribution [21]. The log plot
of displacement distributions, Gsðx; tÞ, at t ¼ τj for differ-
ent models shown in Fig. 1(b) bears evidence in support of
the exponential nature. In the diminishing limit of x0 and τj,
the jump kernel reduces to DαδðxÞ (where Dα ¼ c1x20=τ

α
j )

FIG. 1. (a) Variation of relaxation timewithmomentum transfer k
for different jump-kernelmodels listed inTableS1using the same of
set of parameters (x0, τj, α). The horizontal (solid) and vertical
(dashed) lines represent values of τj and2π=x0, respectively. (b)The
calculated displacement distribution,Gsðx; tÞ at t ¼ τj, for the case
of each of these jump kernels. The final distributions are convoluted
with a Gaussian ensemble for Gsðx; 0Þ.
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effectively restoring the Gaussian regime following fBm.
Further, it is also notable that for a given set of parameters
(x0, τj), the displacement distribution approaches the
Gaussian limit for t ≫ τj irrespective of the choice of
jump kernel (Fig. S1).
An exact analytical solution for the symmetric exponen-

tial kernel is derived to provide insights into real-space
solutions, motivated by its reliability across various
systems and its emergence as a limiting distribution in
highly heterogeneous scenarios. For the exponential decay
kernel considered in Eq. (1) Isðk; tÞ ¼ I0ðkÞ exp f−1=½1þ
ðkx0Þ−2�½t=τj�αg. The exact solution of Isðk; tÞ, obtained by
inverting the Fourier transform [21],

Gsðx; tÞ ¼ e−t̂
α

�
e−x̂

2x0

X∞
n¼0

t̂αðnþ1Þ

mn
x̂ngnðx̂Þþ δðxÞ

�
⊗G0; ð3Þ

whereG0ðxÞ is the initial condition [inverse Fourier transform
of I0ðkÞ] of the system and gnðzÞ are functions governed by a
recursive relationship gnðzÞ¼z−1ð2n−1Þgn−1ðzÞþgn−2ðzÞ,
with the first two terms being g0ðzÞ ¼ 1 and g1ðzÞ ¼
z−1ðzþ 1Þ. Here, x̂ ¼ ðjxj=x0Þ and t̂ ¼ ðt=τjÞ and mn ¼
2nn!ðnþ 1Þ!. The solutions of the equation can also be given
in terms of a series of modified Bessel functions,KnðzÞ [21].
In the strongly heterogeneous limit (jxj=x0 → 0) the solutions
given in Eq. (3) shows an exponential decay in the leading
term, reminiscent of the universal behavior of displacement
distribution in glassforming systems [16,19], and the correc-
tions to the exponential behavior are governed by the
algebraic power series in Eq. (3). The contribution of these
corrections are also related to the ratios ðt=τjÞ in the series.
The appearance of exponential tails is more prominent when
the system is probed at times much smaller than τj. As the
system approaches glass transition, the effective frequency of
jumps decreases, leading to sharper display of exponential
tails.This is consistentwith the consensus that the exponential
behavior of displacement distribution is enhanced near the
glass transition [16]. In general, our model tends to exhibit
stronger affinity to exponential tails with increasing hetero-
geneity (x0 and τj) [21].
As observed in various other glassforming systems

[4,9,10,12,13], the IQENS data of ethylene glycol (EG)
and its associated deep eutectic solvents (DESs)
—EGþZnCl2 (1∶4molar ratio) and EGþ LiCl (1∶3molar
ratio)—follow a stretched exponential relaxation profile
based on characteristic timescale τs and stretching exponent
β (described in SM [21]). Liquid ethylene glycol (EG) is
known to exhibit stretched exponential relaxation [32,33],
and it is anticipated that DESs based on EG will also
display this characteristic, given their resemblance to
supercooled liquids [34]. The average relaxation time
τaðQÞ ¼ τsðQÞβ−1Γðβ−1Þ is calculated from IQENS data
fitting. Figure S4 clearly indicates the crossover from
Gaussian dynamics at low Q to non-Gaussian behavior
at higher Q values for EG and the DESs.

Figures 2(a) and 2(b) show the variation of relaxation
time τa in polymeric systems, as observed from IQENS
experiments for polyisoprene (PI) [4] and MD simulations
of polyvinyl methylether (PVM) [12]. Similar plots for the
systems investigated in this Letter (EG and their DESs) and
other molecular organic glassformers [9,10] are also shown
in Figs. 2(c) and 2(d), respectively. As illustrated in the
plots, these systems show a crossover from Q−2=β (for
Q < 1 Å−1) to Q−2 (for Q > 1 Å−1).
To model the observed crossover in the experimental

IQENS studies, we extend the nGfBm [Eq. (1)] to 3D
systems using a three-dimensional fBm process with an
autocorrelation of the form hrðt1Þ:rðt2Þ ¼ 3Dαðtα1 þ tα2−
jt1 − t2jαi. It has been shown that an n-dimensional fBm
process can be constructed as a linear superposition of n
independent fBm processes [35]. This allows us to con-
struct an extension of Eq. (1) for the 3D nGfBm [21]. The
3D jump kernels can also be chosen based on the Eq. (2)
with parameters r0 and τj subject to an additional constraint
of radial symmetry. The Q dependence of the average
relaxation time follow τaðQÞ ¼ ½Q2ΛðQÞ�−1=α, which we
use to fit the Q dependence of the measured τa for all the
systems using models based on different jump kernels
listed in Table S1 [21].
For PI and PVM, Figs. 2(a) and 2(b) demonstrate that

model A (exponential jump kernel) provides the fits in the
extended Q range. Figures 2(c) and 2(d) showcase the
versatility of the exponential kernel [36] across a diverse
range of systems, including EG, EG-based DESs, glycerol
(GLY), 3-methylpentane (3MP), and the ionic liquid
C4mimTFSI. This highlights the robustness of the

FIG. 2. (a) Plot of τaQ2 vs Q for (a) polyisoprene (PI) [4] and
(b) polyvinyl methyl ether (PVM) [12] with fits based on five
different jump kernels (Models A–E). The exponential kernel
(Model (A) suits the best over a wide Q range and hence
employed in modeling systems with limited Q range. Plot of
τaQ2 vs Q for (c) EG, EGþ LiCl, and EGþ ZnCl2 at 325 K and
(d) different systems from literature (GLY, glycerol [9]; 3MP,
3-methylpentane [10]; C4mimTFSI, 1-butyl-3-methylimidazo-
lium bis(trifluoromethanesolfonyl)imide [10]) along with fits
based on Model A.
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nGfBm model, which works for IQENS measurements
carried out using different spectrometers with varying
resolutions and in particular also emphasizes the larger
applicability of exponential kernel.
Evidently, the model represents the data very well and

captures the crossover from Gaussian dynamics at lowQ to
non-Gaussian behavior at higher Q values for all the
systems. The model parameters r0 and τj provide valuable
insights into the extent of dynamical heterogeneity in the
system. For the specific case of the exponential kernel, the
crossover point in Q space is linked to r0 and can be
precisely estimated as Q� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=βÞ − 1

p
=r0 (β ≠ 1). This

implies that crossover point is inversely related to the extent
of spatial heterogeneity in the nonlocal diffusive process.
As r0 → 0, representing a completely homogeneous limit,
Q� tends to infinity, resulting in Gaussian subdiffusion
regime at all length scales. The values of Q� for different
glassforming systems with varying fragility index are listed
in Table S3 in the SM [21]. The ability to model self-
diffusion in wide range of systems with different fragility
indices indicates the robustness of the nGfBm model.
Notably, r0 shows minimal temperature variation, sug-
gesting that the crossover point Q� is largely unaffected by
temperature changes. Meanwhile, the jump time, τj, shows
a remarkable increase with decrease in temperature, as glass
transition is approached. It is notable that the increase in the
jump times τj essentially dictates that the non-Gaussianity
in the diffusion process is enhanced as the system
approaches glass transition. We also find that Q� typically
lies in the 1–2 Å−1 (Table S4) [31] for all the glassformers
that have been investigated so far. These results, while
consistent with the existing literature, reinforces the idea
that the origin of subdiffusion crossover is linked to the
length scale of nonlocal jumps in the diffusion process

rather than its relationship with the first maxima of the
structure factor peak.
In order to shed more light on the transition from non-

Gaussian toGaussian behavior,we calculate the 3DvanHove
self-correlation function from the model. Focusing on radi-
ally symmetric kernel, we have IðQ; tÞ ¼ exp ½−ðQr0Þ2=
ð1þ ðQr0Þ2Þðt=τjÞβ�. Using this, the van Hove self-correla-
tion function in this case is

Gsðr; tÞ ¼ e−ðt=τjÞβ
�

1

8πr30
e−ðr=r0Þ

X∞
n¼0

ðt=τjÞβðnþ1Þ

ðnþ 1Þ!n!
�

r
2r0

�
n−1

gn−1

�
r
r0

�
þ δðrÞ

�
⊗

�
3

4πhu2i
�

3=2
e−3r

2=ð4hu2iÞ: ð4Þ

The first term in Eq. (4) describes the heterogeneous
diffusion process with a typical exponential displacement
distribution in the leading order, while the second term
represents the Gaussian thermal cloud generated by fast
localized dynamics. For t ≪ τj, the radial van Hove self-
correlation function [4πr2Gsðr; tÞ] is typically a sum of
Gaussian thermal cloud near origin with exponential tails at
large values of r. As time progresses, the contribution of the
diffusive component becomes dominant and the second
term decreases at a rate governed by e−ðt=τjÞβ. Figure 3(a)
shows the plots of 4πr2Gsðr; t ¼ 100 psÞ for the DESs and
pure EG, directly computed with set of parameters
(r0; τj; α; hu2i) obtained from the fits of the QENS spectra

at 300 K. The significantly different values of τj for EG and
DESs, being 7 ps and 200 ps, respectively, account for the
marked disparity in their curves. In DESs, longer τj causes
the initial peaks (r < 2 Å) in van Hove self-correlation
function to be more pronounced. These peaks have vani-
shed in the case of pure EG, as the fast local dynamics have
completely relaxed and the dynamics is described as a
purely diffusive process at 100 ps. Further, the tails
prominently exhibit an exponential decay in the cases of
both the DESs but shows a nearly Gaussian behavior for
pure EG. A clearer perspective of these changes is apparent
from the plots of radial van Hove self-correlation of pure
EG (310 K) at different times (ranging from 1 to 500 ps) in

FIG. 3. (a) The radial van Hove self-correlation function cal-
culated from Eq. (4) based on the parameters (τj; β; r0; hu2i)
extracted from experimental IQENS fits for pure EG and DESs
(EGþ LiCl, EGþ ZnCl2) at T ¼ 300 K and t ¼ 100 ps.
(b) Radial van Hove self-correlation function for pure
EG (310 K) calculated at different times t; t > 10τj are shown
by broken lines and t < 10τj are shown by solid lines.

PHYSICAL REVIEW LETTERS 132, 058202 (2024)

058202-4



Fig. 3(b). Typically, it is observed that the exponential tails
are discernible for t < 10τj. The curves for t < 10τj and
t > 10τj are marked by solid and broken lines, respectively,
to clearly indicate this feature and exhibit the crossover
from non-Gaussian to Gaussian regime.
In order to check the veracity of the model, we have

calculated the radial van Hove self-correlation function
from MD simulations of pure EG and tried to fit it with
Eq. (4). The parameters from the fit were optimized so as to
describe the simulated data over a reasonable time window
(0–500 ps). In order to achieve a consistent model, the
fitting was carried out at different times and model
parameters were optimized across all the times. The
extracted parameters are found to be fairly consistent with
experimental observations. The simulated van Hove self-
correlation function and their respective fits are given
in Fig. S8.
The diffusion landscape in glassformers exhibits various

crossovers entailing different mechanisms. Universally,
molecular and polymeric glassformers exhibit an inherent
crossover from non-Gaussian to Gaussian subdiffusion. In
this Letter, we have characterized the nature of particle
displacements across this crossover by augmenting the
framework of fBm to incorporate nonlocal jumps. The
constructed model provides a generalized mathematical
structure that can be used to describe a number of such
processes that simultaneously involve both non-
Markovianity and spatial jumps in a diffusion process.
We present a generalized jump kernel that elucidates the
subdiffusion crossover, revealing the emergence of an
exponential kernel as a consequence of physical con-
straints. The case of exponentially distributed jumps is
solved providing a link between the crossover point and the
extent of heterogeneity in the system. Notably, this frame-
work also highlights the exponential nature of van Hove
self-correlation function during the non-Gaussian subdif-
fusion regime.
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