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We compute how small input perturbations affect the output of deep neural networks, exploring an
analogy between deep feed-forward networks and dynamical systems, where the growth or decay of local
perturbations is characterized by finite-time Lyapunov exponents. We show that the maximal exponent
forms geometrical structures in input space, akin to coherent structures in dynamical systems. Ridges of
large positive exponents divide input space into different regions that the network associates with different
classes. These ridges visualize the geometry that deep networks construct in input space, shedding light on
the fundamental mechanisms underlying their learning capabilities.
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Deep neural networks can be trained to model com-
plex functional relationships. The expressivity of such
neural networks—their ability to unfold intricate data
structures—increases exponentially as the number of
layers increases [1]. Recent breakthrough applications
of neural networks [2] use deep feed-forward layouts with
many layers of neurons [3]. These are hard to train due to
the multiplicative amplification of signals propagating
through the layers, causing signals to either explode or
vanish in magnitude if the number of layers is too large.
Mathematical analysis in the asymptotic limit of infinitely
wide layers reveals how deep networks can nevertheless
learn to solve classification tasks [4–7]. Recent results
indicate that finite-width networks may learn in different
ways [8–10]. It is not understood, however, when and
how such networks use their exponential expressivity to
represent data features needed for a classification task,
how the representation affects prediction accuracy and
uncertainty, and how it depends on the network layout.
Here we use dynamical-systems theory to answer these

questions. Deep feed-forward networks [Fig. 1(a)] are
discrete dynamical systems. Inputs xð0Þ are mapped iter-

atively through xðlÞi ¼ gðPNl
j¼1 w

ðlÞ
ij xðl−1Þj − θðlÞi Þ, where

gð·Þ is a nonlinear activation function [11], the layer index
l ¼ 0;…; Lþ 1 plays the role of time, L is the number of
hidden layers, Nl is the number of neurons in layer l, and

the weights wðlÞ
ij and thresholds θðlÞi are parameters.

Sensitivity of xðlÞ to small changes in the inputs xð0Þ ¼ x
corresponds to exponentially growing perturbations in a
chaotic system with positive maximal Lyapunov expo-

nent [12,13] liml→∞ λðlÞ1 ðxÞ, with growth rate λðlÞ1 ðxÞ ¼
l−1 log jδxðlÞj=jδxj. The latter is called maximal finite-time
Lyapunov exponent (FTLE).
The network weights wðlÞ

ij are usually initialized as
random numbers, independently Gaussian distributed with
zero mean and variance σ2l. In this case, the Lyapunov
exponents are initially determined by a product of random
matrices, and the multiplicative ergodic theorem guarantees

that λðLÞ1 ðxÞ converges as L → ∞, to a limit that is
independent of x [14]. In the limit Nl ¼ N → ∞, one

finds λðLÞ1 ∼ logðGNσ2Þ, explaining why the initial weight
variance should be chosen so that GNσ2 ¼ 1, because then
signals neither contract nor expand [15–17], stabilizing
initial stages of the learning (the constant G depends on the
choice of activation function [15]).

(a) (b)

FIG. 1. Classification with a fully connected feed-forward net-
work. (a) Layoutwith two input components xð0Þ1 and xð0Þ2 ,L hidden
layerswith five neurons each, and oneoutputxðLþ1Þ. (b) Input plane
(schematic) for a classification problem with a circular decision
boundary that separates input patterns with targets t ¼ þ1 (empty
green square) from those with t ¼ −1 (filled black square).
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In the limit N → ∞, the hidden weights of deep net-
works barely change under training [4,18,19]. For finite
width, by contrast, the weights tend to change [5]. How the
network output changes in response to the changing
weights indicates how the network learns.
To understand how the trained network expresses the

input-data features needed for classification, we ask how the
network output depends on small input changes, encoded in
the x dependence of the maximal-FTLE field λ1ðxÞ of the
trained network. For a classification problem with two-
dimensional inputs x, divided into two classes with targets
tðxÞ ¼ �1 [Fig. 1(b)], we determine how the x dependence
of the maximal FTLE changes when changingN and L. For
narrow networks, we find that the maximal-FTLE field
forms ridges in the input plane, much like Lagrangian
coherent structures in dynamical systems [20–22]. These
ridges provide insight into the learning process, illustrating
how the network learns to change its output by order unity in
response to a small shift of the input pattern across the
decision boundary. The ridges disappear as the network
width grows, suggesting a different learning mechanism.
Formore complex classification problems (MNIST [23] and
CIFAR-10 [24]), we show that FTLE structures in input
space explain variations in classification accuracy and
predictive uncertainty.
Finite-time Lyapunov exponents.—Figure 1(a) shows a

fully connected feed-forward network with L hidden
layers, N0 input components, N neurons per hidden layer,
and NLþ1 ¼ 1 output neuron. The network maps every
input xð0Þ ¼ x to an output xðLþ1Þ. Weights and thresholds
are varied to minimize the output error ½xðLþ1Þ − tðxÞ�2, so
that the network predicts the correct target tðxÞ for each
input x. The sensitivity of xðlÞ to small changes δx is
determined by linearization,

δxðlÞ ¼ DðlÞWðlÞ · · ·Dð2ÞWð2ÞDð1ÞWð1Þδx≡ Jlδx: ð1Þ

Here,WðlÞ are the weight matrices with elements wðlÞ
ij , and

DðlÞ are diagonal matrices with elementsDðlÞ
ij ¼ g0ðbðlÞi Þδij,

with bðlÞi ¼ PNl
j¼1 w

ðlÞ
ij xðl−1Þj − θðlÞi and g0ðbðlÞi Þ ¼

ðd=dbÞgðbÞj
b¼bðlÞi

. The Jacobian JlðxÞ characterizes the

growth or decay of small perturbations to x [12,13]. Itsmaxi-

mal singular value ΛðlÞ
1 ðxÞ increases or decreases exponen-

tially as a function of l, with rate λðlÞ1 ðxÞ ≡ l−1 logΛðlÞ
1 ðxÞ.

The singular values ΛðlÞ
1 ðxÞ > ΛðlÞ

2 ðxÞ > … are the square
roots of the non-negative eigenvalues of the right Cauchy-
Green tensor J⊤l ðxÞJlðxÞ. The maximal eigenvector of
J⊤l ðxÞJlðxÞ determines the direction of maximal stretching,
i.e. in which input direction the output changes the most.
FTLEs and Cauchy-Green tensors are used in solid

mechanics to identify elastic deformation patterns [25],
and to find regions of instability in plastic deformation [26]

and crack initiation [27]. More generally, FTLEs help to
characterize the sensitivity of complex dynamics to initial
conditions [28–31]. In fluid mechanics, they explain the
alignment of particles transported by the fluid [32,33],
providing valuable insight into the stretching and rotation
of fluid elements over time and space [34]. FTLEs allow us
to identify Lagrangian coherent structures [20–22]; fluid-
velocity structures that help to organize and understand
complex spatiotemporal flow patterns [35]. These geomet-
rical structures appear as ridges of large maximal FTLEs,
orthogonal to the maximal stretching direction.
In applying these methods to neural networks, one should

recognize several facts. First, in deep neural networks, the
weights change from layer to layer. Therefore the corre-
sponding dynamical system is not autonomous. Second, the
numberNl of neurons per layer may change as a function of
l, corresponding to a changing phase-space dimension.
Third, the neural-networkweights are trained. This limits the

exponential growth of the maximal singular value ΛðLÞ
1 , and

it causes the FTLE λðLÞ1 ðxÞ to remain x dependent, even in
the limit of largeL (discussed in more detail below). Fourth,
one can use different activation functions, such as the
piecewise linear ReLU function [11], or the smooth tanh
function [15]. Here we use gðbÞ ¼ tanhðbÞ, so that the
network map is continuously differentiable just like the
dynamical systems for which Lagrangian coherent struc-
tures were found and analyzed.
Two-dimensional dataset.—To illustrate the geometrical

structures formed by the maximal FTLE, we first consider a
toy problem. The dataset [Fig. 1(b)] comprises 4 × 104

input patterns, with 90% used for training, the rest for
testing. We trained fully connected feed-forward networks
on this dataset by stochastic gradient descent, minimizing
the output error ½xðLþ1Þ − tðxÞ�2. In this way we obtained
classification accuracies of at least 98%. We used different
layouts, changing the numbers of layers and hidden
neurons per layer. The weights were initialized as inde-
pendent Gaussian random numbers with zero mean and
variance σ2l ∼ N−1

l . The thresholds were initialized to zero
(see the Supplemental Material [36] for details). After
training, we computed the maximal FTLE in layer L and
the associated stretching direction from Eq. (1) as described
in Refs. [38,39].
The results are summarized in Fig. 2, which shows

maximal-FTLE fields for trained networks with different

layouts. We see that the ridges of large positive λðLÞ1 ðxÞ
align with the decision boundary between the two classes
[Fig. 1(b)]. The network learns by grouping the inputs into
two different basins of attraction for t ¼ �1, separated by a

ridge of positive λðLÞ1 ðxÞ. A small shift of the input across
the decision boundary leads to a substantial change in the
output. In other words, a large maximal FTLE quantifies
exponential expressivity of the network near the ridge. This
is consistent with the observation that the output is

PHYSICAL REVIEW LETTERS 132, 057301 (2024)

057301-2



particularly sensitive to weight changes near decision
boundaries [8]. The ridges are most prominent for small
N and large L. The contrast between ridge and background
increases as L becomes larger, quantifying the exponential
expressivity of deep networks [1]. For larger L, the
network can resolve smaller input distances δx because
the singular values increase or decrease exponentially from
layer to layer.
The ridges of large maximal FTLE are Lagrangian

coherent structures, because the maximal stretching direc-
tions (solid lines in Fig. 2) become orthogonal to the ridges
for large L. This demonstrates that there is a stringent
analogy between the FTLE ridges of deep neural networks
and Lagrangian coherent structures.
The ridges gradually disappear as the numberN of hidden

neurons per layer increases, because the maximal singular
value of JLðxÞ approaches a definite x-independent limit as
N → ∞ at fixed L. But how can the network distinguish
inputs with different targets in this case, without ridges
indicating decision boundaries? One possibility is that the
large number of hidden neurons allows the network to
embed the inputs into a high-dimensional space where they
can be separated thanks to the universal approximation
theorem [40]. In this case, training only the output weights
(and threshold) suffices, as demonstrated by Fig. 3(a).
That the classification error with random hidden weights is
larger than that of the fully trained network is not surpris-
ing, since different random embeddings have different
classification errors when the number of patterns exceeds
twice the embedding dimension [11,41]. In summary,
large-N networks can classify with random hidden weights.
This implies that the hidden weights do not need to change

during training, just as in kernel regression with the neural-
tangent kernel [4,18]. In other words, the learning in this
regime is lazy [19].
Figure 3(b) describes in more detail the crossover

between the two learning regimes in Fig. 2. Shown are
local averages of the maximal FTLE on the decision

boundary, hλðLÞ1 ðxÞid, and in the center of the input plane,

hλðLÞ1 ðxÞic, as functions of N for different values of L. The
results were obtained by training for 200 epochs to reach
classification accuracies ≥ 99%. Although the details of the
maximal-FTLE field change upon training further, Fig. 3(b)
allows us to draw the following conclusions about the

transition. First, LhλðLÞ1 ðxÞid tends to an N-independent

constant as L increases, LhλðLÞ1 ðxÞid → Cd. This saturation
is due to training: the network learns to produce output
differences of the order of δxðLþ1Þ ∼ 1, and to resolve input
differences δx on the scale of the mean distance jδxð0Þj
between neighboring inputs over the decision boundary.
Second, the data shown in Fig. 3(b) suggest that

LhλðLÞ1 ðxÞic ≈ −CcLþ logN for large enough L. Third,
the contrast between ridges and background disappears
upon increasing N, when the background reaches the ridge

level, hλðLÞ1 ðxÞic ≈ hλðLÞ1 ðxÞid. At this point the learning
mechanism transitions from learning by ridges to random
embedding. In Fig. 3(b) this happens around Nc ∼
expðCd þ CcLÞ. While the precise form of the law may
depend on the training details, the general conclusion is
that Nc depends very sensitively on L, because the N
dependence of the relation is logarithmic, just as the
N → ∞ result for the Lyapunov exponent quoted above.
We remark that the L scaling discussed above implies that

λðLÞ1 ðxÞ remains x dependent for large L.

FIG. 2. Geometrical FTLE structures in input space for differ-
ent widths N and depths L of fully connected feed-forward neural
networks trained on the dataset from Fig. 1(b). Shown is the

magnitude of LλðLÞ1 ðxÞ, and the maximal stretching directions
(black lines).

FIG. 3. (a) Classification error for a fully connected feed-
forward network with L ¼ 2 hidden layers with untrained,
random hidden weights, and trained output weights, as a function
of N (solid black line). Also shown is the classification error
for the fully trained network (dashed line). Both curves
were obtained for the dataset shown schematically in Fig. 1.
(b) Quantification of the crossover seen in Fig. 2, for fully tra-

ined networks. Shown are the averages hλðLÞ1 ðxÞid (solid) and

hλðLÞ1 ðxÞic (dashed), see text. The data was obtained by averaging
over independent initial-weight realizations. Also shown is a fit to

LhλðLÞ1 ðxÞic ≈ −CcLþ logN (dotted).
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One may wonder how the FTLE fields in Fig. 2 depend
on the initial weight variance σ2. For GNσ2 < 1, the
FTLEs are negative on average, initially. This implies a
slowing down of the initial training (vanishing-gradient
problem). To see this, consider the fundamental forward-
backward dichotomy of deep neural networks [11]: weight
updates in the stochastic-gradient algorithm are given by

δwðlÞ
mn ∝ ΔðlÞ

m xðl−1Þn , where

½ΔðlÞ�T ¼ ½ΔðLÞ�TDðLÞWðLÞ � � �Dðlþ1ÞWðlþ1ÞDðlÞ; ð2Þ

and ΔðLÞ
j ¼ g0ðbðLþ1ÞÞ½xðLþ1Þ − tðxÞ�g0ðbðLÞj ÞwðLþ1Þ

j . It fol-
lows from Eq. (2) that negative FTLEs cause small weight

increments δwðlÞ
mn. Conversely, when the maximal FTLE is

positive and too large, the weights grow rapidly, leading to
training instabilities.
Remarkably, training has a self-organizing effect. After

training, the maximal-FTLE distribution becomes indepen-
dent of the initial σ2, provided that the initial maximal
FTLE is not too large (Fig. S1 in [36]). For small enoughN,
in particular, the distribution centers around zero. This is
explained by the fact that the network learns by creating
maximal-FTLE ridges in input space: in order to accom-

modate positive and negative λðLÞ1 ðxÞ, the distribution must
center around zero, alleviating the unstable-gradient prob-
lem. We remark that the shape of the distribution, the tails
in particular, continues to evolve as one trains further.
MNIST dataset.—This dataset consists of 60 000 images

of handwritten digits 0 to 9. Each grayscale image has
28 × 28 pixels and was pre-processed to facilitate machine
learning [23]. Deep neural networks can achieve high
precision in classifying this data, with accuracies of up
to 99.77% on a test set of 10 000 digits [42].
We determined the maximal-FTLE field for this dataset

for a network with L ¼ 16 hidden layers, each containing
N ¼ 20 neurons, and a standard softmax layer with ten
outputs [11]. To visualize the geometrical structures in
the 282-dimensional input space, we projected it onto two
dimensions as follows [43]. We added a bottleneck layer
with two neurons to the fully trained network, just before
the softmax-output layer. We retrained only the weights and
thresholds of this additional layer and the output layer,
keeping all other hidden neurons unchanged. The local
fields b1 and b2 of the two bottleneck neurons are the
coordinates of the two-dimensional representation shown
in Fig. 4(a). We see that the input data separate into ten
distinct clusters corresponding to the ten digits. The
maximal FTLEs at the center of these clusters are very
small or even negative, indicating that the output is not
sensitive to small input changes. These regions are delin-
eated by areas with significantly larger positive FTLEs [see
3× enlargement in panel (a)]. Figure 2 leads us to expect

that patterns with large λðLÞ1 ðxÞ are located near the decision
boundaries in high-dimensional input space. This is verified

by strong correlations between λðLÞ1 ðxÞ and both the classi-
fication error and the predictive uncertainty. Figure 4(b)
shows that the classification error on the test set is larger for

inputs x with larger λðLÞ1 ðxÞ, and that large values of λðLÞ1 ðxÞ
correlate with high predictive uncertainty, measured by the
entropy H of the posterior predictive distribution [44]. For

softmax outputs, where xðLþ1Þ
i can be interpreted as prob-

abilities, H ¼ −
P

ihxðLþ1Þ
i i loghxðLþ1Þ

i i, where h·i denotes
an average over an ensemble of networks with the same
layout but different weight initializations [45,46]. These
observations confirm that ridges of maximal FTLEs localize
the decision boundaries in input space. Similar conclusions
hold for other architectures (Fig. S2 in [36]), and for the
more complex CIFAR-10 dataset (Fig. S3).
Figure 4(a) also shows λðLÞ1 ðxÞ along a path generated by

an adversarial attack. The attack begins from a sample
within the cluster corresponding to the digit 9 and aims to
transform it into a digit 4 by making small perturbations to
the input data [47] toward class 4. We see that the maximal
FTLE is small at first, then increases as the path approaches
the decision boundary, and eventually decreases again. This

FIG. 4. Maximal-FTLE field for MNIST [23]. A fully con-
nected feed-forward network with N ¼ 20 neurons per hidden
layer, L ¼ 16 hidden layers, and a softmax layer with ten outputs
was trained to a classification accuracy of 98.88%. The maximal
FTLE was calculated for each of the 282-dimensional inputs and
projected onto two dimensions (see text). (a) Training data in the

nonlinear projection. For each input, the maximal FTLE λðLÞ1 is
shown color coded. The box contains 93% of the recognized
digits 0. A 3× zoom of this box is also shown. The colored line

represents an adversarial attack from 9 to 4 (see text), with λðLÞ1 ðxÞ
color coded. (b) Classification error on the test set and predictive

uncertainty H (see text) as functions of λðLÞ1 ðxÞ. (c),(d) Mean and
standard deviation of maximal-FTLE distribution versus N.
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indicates, first, that our conclusions regarding the correla-
tions between large maximal FTLEs and decision bounda-
ries extend to neighborhoods of the MNIST training set that
contain patterns the network has not encountered during
training. Second, the maximal stretching direction corre-
lates with the direction in input space found by the
adversarial attack (Fig. S4 [36]). Third, since it is hard
to locate the FTLE ridges in the high-dimensional input
space, we characterized the transition between the two
learning regimes in terms of the mean and the standard
deviation of the FTLE distribution. Figure 4(c) shows that
the mean becomes positive and that the variance tends to
zero as N grows, leading to the uniform FTLE field
characteristic of learning by random embedding.
Conclusions.—For deep neural networks trained on differ-

ent classification problems, we explored geometrical struc-
tures of finite-time Lyapunov exponents in input space. In
fluid mechanics, such Lagrangian coherent structures appear
as ridges of large exponents, and they are used with great
success to organize the phase space of complex spatiotem-
poral flow patterns. The same is true for deep neural
networks: FTLE ridges partition input space into different
regions associated with different classes. Our analysis shows
how the network exploits its exponential expressivity to form
the ridges. Their sharpness determines how quickly classi-
fication errors and prediction uncertainty decreases as one
moves away from the ridge. As the width of the network
increases, the contrast between ridge and background dis-
appears, leading to a different learning mechanism, random
embedding, with qualitative differences regarding classifi-
cation errors and predictive uncertainties. The transition to
this lazy-learning regime [4,18,19] occurs for very wide
networks, with widths ∼ expðLÞ. The transition may
explain why wider networks are more robust against
adversarial attacks [47]: the less important the ridges are
for representing the relevant data structures, the harder it is
to realize adversarial attacks. The geometrical method
presented here may extend to other network architectures,
such as resnets [48] or transformers [49], and could help to
visualize and understand the mechanisms that allow such
neural networks to learn, but this remains a question for
the future.
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