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The nonequilibrium dynamics of domain wall initial states in a classical anisotropic Heisenberg chain
exhibits a striking coexistence of apparently linear and nonlinear behaviors: the propagation and spreading
of the domain wall can be captured quantitatively by linear, i.e., noninteracting, spin wave theory absent its
usual justifications; while, simultaneously, for a wide range of easy-plane anisotropies, emission can take the
place of stable solitons—a process and objects intrinsically associated with interactions and nonlinearities.
The easy-axis domain wall only has transient dynamics, the isotropic one broadens diffusively, while the
easy-plane one yields a pair of ballistically counterpropagating domain walls which, unusually, broaden
subdiffusively, their width scaling as t1=3.
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Introduction.—A prototypical setting for nonequilibrium
dynamics is an initial state with two neighboring regions in
different stationary states of the same Hamiltonian. A single
sharp domain wall between distinct stationary states can
move and spread, carrying energy—and, possibly, other
conserved quantities. This type of dynamics has been
studied in many contexts, including the spin-1

2
quantum

XXZ chain [1–33], other quantum spin chains [30,34–38],
quantum field theories [39–41], the continuum Landau-
Lifshitz model of classical spin densities [30,42], two-
dimensional quantum systems [43,44], and the simple
exclusion process [45].
Here, we consider a classical one-dimensional aniso-

tropic (XXZ) Heisenberg chain,

H ¼ −J
X
i

ðSxi Sxiþ1 þ Syi S
y
iþ1 þ ΔSziS

z
iþ1Þ; ð1Þ

where the Si ∈ S2 are classical Oð3Þ vectors at sites i
of a chain, and we assume J > 0 is ferromagnetic. In
addition to serving as one of the foundational models of
magnetism and many-body spin physics, its dynamical
properties have recently been subject to renewed inves-
tigation from various perspectives, including quantum-to-

classical correspondence, nonlinearity, and integrability,
and anomalous hydrodynamics [46–58].
We investigate domain wall dynamics in this, arguably,

simplest incarnation of this problem. We find a rich
phenomenology with a number of intriguing aspects, and
a co-existence of linear and nonlinear behaviors: ballisti-
cally propagating domain walls which spread subdiffu-
sively, showing the interplay of ballistic dynamics with
subdiffusion, and which are well described by linear spin-
wave theory; while, at the same time, we observe the
emission of stable solitons, connecting to questions of
dynamics and solitons in nearly integrable systems. It also
opens a complementary perspective on the much studied
related problem of quantum Heisenberg chains, where
signatures of interesting phenomena such as KPZ scaling
[25,59] have been experimentally observed [60,61].
We find qualitatively distinct behavior in the easy-plane,

isotropic, and easy-axis cases (0 ≤ Δ < 1, Δ ¼ 1, and
Δ > 1, respectively). Our results and setup are summarized
in Fig. 1. For easy-plane anisotropy, the domain wall splits
into two ballistically counterpropagating ones [Fig. 1(c)].
Since the Hamiltonian is nonintegrable and intrinsically
nonlinear, and since the propagating domain walls have
high energy compared to the background, they can, in
principle, emit or decay into other excitations—giving the
nonequilibrium setup an inherent nonlinear flavor. It is
therefore all the more surprising that, over the entire range
of easy-plane anisotropyΔ∈ ½0; 1Þ, domain walls propagate
ballistically. This is reminiscent of the behavior of quasi-
particles in integrable systems [14,30,62–72], or that of
operator spreading [73–75]. For the latter, ballistic behavior
is accompanied by diffusive broadening [73–75]. More
generally, broadening in interacting many-body systems is
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typically diffusive, with exceptions usually associated with
integrability or a lack of interactions.
In sharp contrast to this expectation, we show that the

propagating domain walls broaden subdiffusively, as ∼t1=3,
in the entire easy-plane regime Δ∈ ½0; 1Þ. We find that the
propagation speed, profile, and t1=3 scaling can be quanti-
tatively obtained from linear spin wave theory. At the same
time, above a critical angle φcðΔÞ between the domains
separated by the propagating domain wall [Fig. 1(b)], the
linear behavior of the propagating domain walls coexists
with the aforementioned, inherently nonlinear feature of
the emission of solitons. We provide a heuristic picture for
all of these processes.
At the isotropic Heisenberg point Δ ¼ 1, the domain

walls can no longer propagate, and the subdiffusive spread-
ing gives way to a diffusive melting of the original domain
wall [Fig. 1(c)]. Nor can the domain walls propagate in the
easy-axis case (Δ > 1), where the melting is fully arrested
and a static soliton is approached asymptotically [Fig. 1(c)].
The behavior for Δ ≥ 1 is analogous to that known for

quantum spin-1
2
chains [3,42]—a classical-quantum anal-

ogy which is, in itself, remarkable. By contrast, the t1=3

broadening of the domain wall that we find over the entire
range 0 ≤ Δ < 1 appears, in the quantum spin-1

2
case, only

at the Δ ¼ 0 point [2,9,10,12] or at the light cone of fastest
excitations [23,24,30,76], being associated with the non-
interacting (free-fermion) nature of these cases. The
existence and emission of the solitons have, to the best

of our knowledge, not been previously observed—either in
the quantum model or in a corresponding continuum
Landau-Lifshitz model.
In the following, we provide details for these claims, and

conclude with a discussion of the broader significance of
this Letter.
Model.—We consider the classical XXZ spin chain,

Eq. (1). The dynamics is given by the classical equations
of motion,

Ṡμi ¼ −ϵμνλJνðSνiþ1 þ Sνi−1ÞSλi ; ð2Þ

which follow from the fundamental Poisson brackets
fSμi ; Sνjg ¼ δijϵ

μνλSλj, where Jx ¼ Jy ¼ J ¼ 1 (which
implicitly defines all units), and 0 ≤ Jz ¼ Δ. The XY point
Δ ¼ 0 corresponds to the free-fermion limit of the quantum
spin-1

2
chain, but is, in the classical case, an interact-

ing model.
Easy-plane, Δ < 1.—We consider a sharp domain wall

in the in-plane components as the initial condition,

Si<0 ¼ cosðφ=2Þx̂ − sinðφ=2Þŷ;
Si¼0 ¼ x̂;

Si>0 ¼ cosðφ=2Þx̂þ sinðφ=2Þŷ; ð3Þ

for some amplitude φ that sets the magnetization jump
across the domain wall as illustrated in Fig. 1(a). The Oð2Þ

FIG. 1. (a) Schematic of the initial conditions (3), in the XY plane, shown for φ ¼ π=2. (b) Boundaries between the different
dynamical regimes as a function of the anisotropy Δ and amplitude φ. I.A and I.B are the two linear regimes (distinguished by whether
the oscillations are behind or ahead of the counter-propagating domain walls, respectively), where all of the dynamical features are well
described by linear spin wave theory; II is the easy-plane nonlinear regime, where solitons coexist with the spreading domain walls. III is
the easy-axis regime, with a single, static domain wall. The isotropic point Δ ¼ 1 corresponds to the transition between I.B and III, and
is well described by linear spin wave theory with a single, diffusively broadening domain wall. The vertical bars denote the uncertainty
in determining the transition between I.B and II from the simulations. (c) Overview of the domain wall dynamics shown for the easy-
plane Δ ¼ 0.3 (inverted shaded triangle), the isotropic point Δ ¼ 1 (shaded square) and the easy-axis Δ ¼ 1.2 (shaded triangle),
respectively. Note the different ranges of the x axes. φ ¼ π=2 for the easy-plane and the isotropic case, where Sy is plotted. Sz is plotted
for the easy-axis case, with φ ¼ π. Ballistic counterpropagation is observed in the easy-plane, diffusive melting of the original domain
wall is seen at the isotropic point, while the easy-axis approaches a very narrow static soliton. Note that, since the subdiffusive domain
wall spreading in the easy plane is parametrically slower than the ballistic propagation, and the emitted solitons move only very slightly
slower than the domain walls and so are not well separated over the timescales shown, both of these are difficult to see on this overview
plot—they are seen more readily in Fig. 2 instead.
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isotropy implies that any choice of φ connects two easy-
plane ground states. We set the spin at i ¼ 0 to lie halfway
between the two domains, Si¼0 ¼ x̂ (though the results do
not depend on the choice of Si¼0, so long as we do not
select an unstable steady state [77]).
Numerically integrating the equations of motion (2) with

initial conditions (3) and open boundaries reveals that two
counterpropagating domain walls immediately emerge
from i ¼ 0: a left-moving one connecting the (−) domain
to the expanding x̂ domain; and a right-moving one
connecting the x̂ domain to the (þ) domain, as seen in
Fig. 1(c).
The size of the x̂ domain grows linearly with time,

implying ballistic domain wall motion. Moreover, the
domain-wall velocity does not differ measurably from
the long-wavelength group velocity of the spin wave
expansion, c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − ΔÞp
[cf. Eqs. (4)–(6), see also the

Supplemental Material [78] ], despite the nonlinearity of
the equations of motion.
To investigate the long-time dynamics of the domain

wall numerically, we switch to its co-moving frame [78].
We then find, numerically, that this easy-plane dynamics
exhibits three qualitatively distinct regimes, cf. Fig. 1(b):
two linear regimes, I.A and I.B, so-called because they are
well described by linear spin wave theory in their entirety;
and a nonlinear regime II characterized by an instability to
the emission of solitons.
Within the linear regime we find, in addition to the

ballistic motion of the domain walls, a subdiffusive spread-
ing, with their width scaling as t1=3. We demonstrate this
scaling collapse of the full domain wall profiles in Figs. 2(a)
and 2(b). In the nonlinear regimewe observe the emission of
a soliton during domain wall propagation shown in Fig. 2(c)
which moves ballistically at a slower speed than the domain
wall. We show with a purely ballistic scaling collapse in
Fig. 2(d) that, indeed, this soliton does not disperse.
Spin-wave theory.—We next demonstrate that the spin-

wave description of the easy-plane dynamics, remarkably,
captures all of the relevant features in what we call the
linear regimes, and correctly predicts velocity and width
scaling of the domain walls even in the nonlinear regime.
We expand each spin about the x̂ domain,

Si ¼ x̂
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2i

q
þli; ð4Þ

and retain only terms linear in li in the equations of motion
(which is, a priori, not controlled, as φ is large).
The analytical solution of the resulting problem is

presented in the Supplemental Material [78], but the central
asymptotic result is readily stated: the spin-wave dispersion
is given by

ωq ∼ cjqj − αjqj3 þ…; q ∼ 0; ð5Þ

where

c ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
; α ¼ 1 − 7Δ

12c
; ð6Þ

and, at long times, the left-moving domain wall is a
function D of the variable ðjþ ctÞ=ð3αtÞ1=3:

SyjðtÞ ∼ sin
�
φ

2

�
D
�

jþ ct

ð3αtÞ1=3
�
: ð7Þ

The linear spin wave calculation thus correctly predicts,
asymptotically, two ballistically counterpropagating domain
walls, each with a width scaling as wðtÞ ∝ t1=3. We also
observe good quantitative agreement of the spin-wave
prediction (dotted) with the profiles obtained in the full
numerical simulation (solid curves) in Figs. 2(a) and 2(b).
The integral form is different from that appearing in the
quantum free-fermion case [1,12] but is similar to those
appearing in recent studies of caustics and catastrophes at
light cones [79–81].
Soliton emission in the nonlinear regime.—We next

discuss the emission of solitons in the easy-plane regime.
As observed in Figs. 2(c) and 2(d) the moving domain wall
can emit a stable (nondispersing) ballistically propagating
soliton connecting two ground states. We find that this
emission only takes place above a critical, anisotropy-
dependent amplitude φ > φcðΔÞ, and, in particular, only in
the regime 1=7 < Δ < 1, as shown in Fig. 1(b). The energy
carried by these solitons is seen to depend both on the

(c) (d)

(b)(a)

FIG. 2. Dynamics in the easy-plane case. Dotted lines show spin
wave predictions, where relevant. Only the left-moving domain
walls are shown, and lighter colors indicate later times. (a) Linear
regime I.A (Δ ¼ 0, φ ¼ π=2), showing the ballistic propagation
and subdiffusive spreading of the domain wall, with the oscil-
lations trailing. (b) Linear regime I.B (Δ ¼ 0.3, φ ¼ 3π=10),
where the oscillations are now ahead of the domain wall. (c) Non-
linear regime II (Δ ¼ 0.25, φ ¼ π=2), showing that the domain
wall decays by emitting a soliton, though its speed and width
scaling are unaffected; the soliton moves at a slower velocity
v < c, and the separation increases with time. (d) Same parameters
and times as (c), but in the comoving frame of the soliton.
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anisotropy Δ and the initial amplitude of the domain
wall φ. Importantly, however, we observe that, at fixed Δ,
the angular amplitude φS of the emitted soliton (the in-
plane angle between the two ground states the soliton
connects) does not depend on φ [see Fig. 3(b)], and, in
fact, is equal to the critical value φc ¼ φS. Finally, we
observe n-soliton emission if φ > ð2n − 1ÞφS, as shown in
Figs. 3(c) and 3(d).
To explain this phenomenology we begin with

an observation on the kinematics of magnons. When
Δ < 1=7, the spin-wave dispersion has negative curvature
at small q; this ensures that two-magnon scattering is
elastic. In contrast, inelastic scattering is possible for
Δ > 1=7, allowing the dynamic instability towards soliton
emission [78].
To explain why the emitted soliton’s amplitude φS de-

pends only onΔ (i.e., is unique for a given Hamiltonian), we
propose the following heuristic model of soliton production.
We assume that the model supports a two-parameter family
of soliton solutions, which we may take to be their energy
ES and velocity vS. These two parameters, then, uniquely
determine the other physical properties, such as the width
and amplitude. Now, as the interactions are local, and the
soliton is observed to be created at the ballistically-moving
centre of the domain wall over an extended time, the speed
of the soliton must initially be matched to the Δ-dependent
domain wall speed so that energy can be efficiently
transferred—that is, vS ¼ cðΔÞ. Further, since the soliton
is seeded by the domain wall, it must begin with zero
energy ES → 0. This fixes the two parameters, and so picks
out a unique initial soliton with some amplitude φSðΔÞ. As
the dynamics proceeds, energy is transferred from the
domain wall to the soliton, slowing down the latter and
leading to its separation from the domain wall; but the
amplitude φS is a nonlocal property [82], and so cannot be

changed by local dynamical processes after the soliton and
domain wall begin to separate.
Finally, given the fixed soliton amplitude φS, we can

provide an energetic argument for the stability regions. The
domain-wall energy depends monotonically on its ampli-
tude, which must, therefore, decrease if soliton emission is to
occur. The initial amplitude of the domain wall is φ=2, and
after the emission the new amplitude is jφS − φ=2j. Thus,
emission is possible only if φ > φc ¼ φS. This also implies
that n-soliton emission is possible if φ > ð2n − 1ÞφS, as
observed in Figs. 3(c) and 3(d).
Easy-axis and isotropic dynamics.—We briefly remark

on the domain wall dynamics at the isotropic point (Δ ¼ 1)
and in the easy-axis case (Δ > 1).
At the isotropic point, there can be no propagating

ferromagnetic domain walls, because all components of
the magnetization are conserved; instead, we observe
that the initially sharp domain wall spreads diffusively
[Fig. 4(a)]. This can be understood within the linear spin-
wave picture. At Δ ¼ 1, the dispersion switches from an
odd-power expansion to the even expansion [78]

ωq ¼ 2½1 − cosðqÞ� ∼ q2 þ � � � ; q ∼ 0: ð8Þ

There are no linear (dispersionless) terms—so the center
of the domain wall does not move—and the width is now
controlled by the quadratic, not cubic, term. Details of the
calculation are presented in [78]. The final, asymptotic
answer can be conveniently expressed in terms of the
normalized Fresnel integrals,

SyjðtÞ ∼ sin

�
φ

2

��
C
�

jffiffiffiffiffiffiffi
2πt

p
�
þ S

�
jffiffiffiffiffiffiffi
2πt

p
��

; ð9Þ

which shows good quantitative agreement with the full
solution as seen in Fig. 4(a).
For the easy axis, we change the initial conditions so that

the domain wall occurs in the z components, ensuring that
the state has finite energy. Specifically,

(a) (b)

(c) (d)

FIG. 3. Soliton emission in the easy-plane dynamics. (a),(b)
Dependence of the soliton energy ES and soliton amplitude φS,
respectively, on the initial amplitude φ. We observe that the
amplitude of the emitted solitons is almost constant. (c),(d) Two-
and three-soliton emission, respectively, when φ ≫ φS.

(a) (b)

FIG. 4. Dynamics (a) at the isotropic point, and (b) in the easy-
axis regime (Δ ¼ 1.2). There are no propagating domain walls in
either case: the initial state spreads diffusively at the isotropic
point, whilst it approaches the static soliton in the easy-axis case.
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Si<0 ¼ −ẑ; Si¼0 ¼ x̂; Si>0 ¼ þẑ: ð10Þ

Now, since the z magnetization is conserved, there can
be no propagating domain wall solutions; some dissipative
spin-wave radiation escapes, before the state settles down,
in an oscillatory manner [Fig. 4(b)], to the static soliton,

Szj ¼ tanh½jcosh−1ðΔÞ� ð11Þ

(see Ref. [78] for the derivation of this soliton solution).
Conclusions and outlook.—Our Letter of domain wall

dynamics in the classical anisotropic Heisenberg spin chain
reveals a remarkably rich and unexpected phenomenology,
including ballistic propagation and subdiffusive spreading
of domain walls in the easy-plane regime, alongside the
existence and emission of stable solitons—a highly non-
linear phenomenon coincident with a description of many
aspects of the dynamics in the framework of linear spin-
wave theory.
The fact that all of the essential features of the

regimes I.A and I.B (where no solitons are emitted,
cf. Fig. 1) are captured by a linearized description is,
itself, remarkable—and connects this Letter to the broader
question of under what conditions nonlinear settings—
e.g., a priori beyond the linear response regime—may still
be described by simplified linear theories. This issue has
appeared prominently, for example, in the study of KPZ
dynamics [60,61,72] expected for small jumps in the
initial condition, but in fact observed for larger ones.
Further, how a description of the “doubly nonlinear”
phenomenon of the emission of (single or even multiple)
stable solitons can coexist with a linear description of the
propagation of the emitting domain wall is a tantalizing
open question for future theoretical work.
This Letter also sheds some light on the question of

when, and to what extent, classical treatments can account
for a priori complex quantum dynamics, by providing
closely related instances of where this appears to be (im)
possible: while theΔ ≥ 1 regimes and the XY point (Δ ¼ 0)
appear to be entirely analogous both classically and quan-
tum-mechanically [15,22,32,33,42], the 0 < Δ < 1 regime
is qualitatively distinct in the classical case. While reflecting
some properties of the quantum Δ ¼ 0 case [9,10], the
phenomenon of soliton emission has not been observed in
previous studies of either the S ¼ 1

2
quantum case or the

continuum Landau-Lifshitz model.
Overall, it has become clear that spin chains, not just

quantum but also classical, host many unexplored features.
The classical Heisenberg spin chain in particular has
proven to be a fruitful platform to uncover and understand
complex phenomena, and is presumably good for many
surprises in future studies.
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