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The force autocorrelation function (FACF), a concept of fundamental interest in statistical mechanics,
encodes the effect of interactions on the dynamics of a tagged particle. In equilibrium, the FACF is believed
to decay monotonically in time, which is a signature of slowing down of the dynamics of the tagged particle
due to interactions. Here, we analytically show that in odd-diffusive systems, which are characterized by a
diffusion tensor with antisymmetric elements, the FACF can become negative and even exhibit temporal
oscillations. We also demonstrate that, despite the isotropy, the knowledge of FACF alone is not sufficient
to describe the dynamics: the full autocorrelation tensor is required and contains an antisymmetric part.
These unusual properties translate into enhanced dynamics of the tagged particle quantified via the
self-diffusion coefficient that, remarkably, increases due to particle interactions.
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Introduction.—The self-diffusion coefficient is a trans-
port coefficient, that characterizes the average displacement
of a tagged particle in an interacting system. It can be
determined from the time integral of the force autocorre-
lation function (FACF), which is an example of the more
general Green-Kubo relations between transport coeffi-
cients and correlation functions [1,2]. The effect of inter-
particle interactions on the self-diffusion is encoded in the
FACF, and hence, understanding its dynamical properties is
of central interest in many-body statistical mechanics. It has
been conjectured that the FACF decays monotonically in
overdamped equilibrium systems [3,18–20], independent
of the nature of the interaction and for all densities [21–24].
This is consistent with the notion that interparticle
interactions typically reduce the self-diffusion [24,25].
Nonmonotonicity in the FACF, and hence a more complex
behavior of the self-diffusion, however, emerges when
considering underdamped dynamics [26], memory [27],
or nonequilibrium systems, as due to activity [20], or
driving [28], features that are absent in overdamped
equilibrium systems.
Here, we analytically show that contrary to the long-held

belief, the FACF can be nonmonotonic and even oscillatory
in overdamped equilibrium systems [3]. Systems showing
this behavior are characterized by probability fluxes, which
are perpendicular to concentration gradients and are
referred to as odd-diffusive systems [29]. While these
systems exhibit fluctuations in accordance with the fluc-
tuation-dissipation theorem [30–32] and their dynamics are
overdamped, they are fundamentally distinct from the usual

overdamped systems in that their time evolution is gov-
erned by a non-Hermitian operator. We further demonstrate
that a nonmonotonic FACF provides a rationale for the
atypical trend observed in the self-diffusion coefficient, i.e.,
it increases with increasing concentration [33].
The transverse response to the perturbation is the

fundamental property of odd systems, which have received
much interest lately [34]. In addition to odd-diffusive
systems, there are odd systems characterized by odd
viscosity [35–40], odd elasticity [41,42], and odd viscoe-
lasticity [43,44]. With the advent of experimental odd
systems such as spinning biological organisms [45], chiral
fluids [46,47], and colloidal spinners [48], the interest in
odd systems has increased rapidly.
The odd-diffusion tensor for a two-dimensional isotropic

system can be written as

D ¼ D0ð1þ κεÞ; ð1Þ

where 1 is the identity matrix, ε is the antisymmetric
Levi-Civita symbol in two dimensions (εxy ¼ −εyx ¼ 1

and εxx ¼ εyy ¼ 0), D0 is the diffusivity, and κ is the odd-
diffusion parameter. A nonzero κ results in probability
fluxes perpendicular to concentration gradients. Examples
of odd-diffusive systems are Brownian particles diffusing
under the effect of Lorentz force [49–54], and diffusing
skyrmions [55–60]; see also the Supplemental Material
(SM) [4]. Although these are equilibrium odd-diffusive
systems [30], there exist also driven odd-diffusive
systems such as active chiral particles (also called circle
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swimmers) [61–64] and strongly damped particles
subjected to Magnus [65] or Coriolis force [66]. In contrast
to equilibrium systems, which are invariant under time
reversal, the odd-diffusive behavior in nonequilibrium
systems is a consequence of broken time-reversal and
parity symmetries [40].
While an exact calculation of the FACF is a formidable

task, near-exact analytical results can be obtained in the
dilute limit in which the dynamics are dominated by two-
body effects. To this end, we generalize the first-principles
approach developed by Hanna, Hess, and Klein [21,22]
to calculate the FACF in a dilute odd-diffusive system of
hard-core interacting particles. We show analytically that
odd diffusion qualitatively alters the time correlations: the
correlation function becomes negative for finite κ indicat-
ing the anticorrelated nature of the force experienced by an
odd-diffusive particle due to collisions with other particles.
Moreover, the correlation function exhibits temporal oscil-
lations for certain values of κ; specifically, it crosses
zero twice. We further show that for sufficiently large κ,
the integral of the correlation function becomes negative,
which gives rise to the increase in the self-diffusion
coefficient. Using the Green-Kubo relation, we derive
exactly the same expression for the self-diffusion coeffi-
cient as in Ref. [33], which was obtained using an
alternative approach.
Theoretical background.—We consider a two-

dimensional system of two interacting, odd-diffusive hard
disks with coordinates x⃗ ¼ ðx1;x2Þ. The two-particle
conditional probability density function for the particles
to evolve from x⃗0 at time t0 ≤ t to x⃗ at time t,
P ¼ Pðx⃗; tjx⃗0; t0Þ, satisfies the Fokker-Planck equation

∂

∂t
P ¼ ∇1 ·D½∇1 þ β∇1UðrÞ�P

þ∇2 · D½∇2 þ β∇2UðrÞ�P; ð2Þ

with the odd-diffusion tensor (1) and ∇1, ∇2 as the partial
differential operator with respect to the coordinates of
particle one and two, respectively. UðrÞ is the potential
energy with r ¼ jx1 − x2j as the relative distance between
the particles and β ¼ 1=kBT, where kB is the Boltzmann
constant and T is the temperature. We assume hard-core
interactions between the two disks of diameter σ, which can
be written as UðrÞ ¼ f∞;

0;
r≤σ
r>σ. The analytical solution to the

two-particle Fokker-Planck equation was obtained for
normal-diffusing particles, i.e., D ¼ D01 [21,22].
Note that for κ ≠ 0, the time-evolution operator is
non-Hermitian. While the hard-core interactions are
modeled via Neumann boundary conditions in normal-
diffusing systems, they are modeled as oblique boundary
conditions in odd-diffusive systems due to the transverse
fluxes [33,67]. This has profound consequences for the
solution and therefore for the application of our theory.

We solve the two-particle problem (2) for odd-diffusive
hard disks exactly in the SM [4].
Force autocorrelation tensor.—The force autocorrelation

tensor (FACT), which is defined asCFðτÞ ¼ hFðτÞ ⊗ Fð0Þi,
can be written as [25]

CFðτÞ ¼
Z

dx⃗
Z

dx⃗0 Fðx⃗Þ ⊗ Fðx⃗0Þ

× Pðx⃗; τjx⃗0; 0ÞPeqðx⃗0Þ; ð3Þ

for τ > 0. Here, F is the interaction force acting on a tagged
particle due to other particles, h·i denotes an ensemble
average with the equilibrium distribution Peqðx⃗0Þ, and the
outer product is defined as ½A ⊗ B�αβ ¼ AαBβ. Throughout
thisLetter, time ismeasured in units of τ0 ¼ σ2=ð2D0Þ,which
is the characteristic timescale of a particle diffusing over a
distance of diameter σ, i.e., τ ¼ t=τ0. The FACT can be
calculated from Eq. (3) to first order in the concentration,
details of which are shown in SM [4]. Similar to the diffusion
tensor, the FACT can be split in a diagonal and an anti-
symmetric off-diagonal part:

CFðτÞ ¼ Cdiag
F ðτÞ1þ Coff

F ðτÞε; ð4Þ

for τ > 0, where Cdiag
F ðτÞ and Coff

F ðτÞ are the diagonal and
antisymmetric off-diagonal elements of the FACT. In Laplace
domain they read

C̃diag
F ðsÞ ¼ 2ϕ

β2D0

K1½
ffiffiffi
s

p
K0 þ K1�

½ ffiffiffi
s

p
K0 þ K1�2 þ ½κK1�2

; ð5Þ

C̃off
F ðsÞ ¼ 2ϕ

β2D0

κ½K1�2
½ ffiffiffi

s
p

K0 þ K1�2 þ ½κK1�2
; ð6Þ

where Kn ¼ Knð
ffiffiffi
s

p Þ is the modified Bessel function of the
second kind of order n, ϕ ¼ πðN=VÞðσ=2Þ2 is the area
fraction for N particles of diameter σ in an area V, and (·̃)
denotes the Laplace transform with s as the Laplace variable
conjugate to τ. Note that the off-diagonal elements Coff

F are
proportional to the odd-diffusion parameter κ and therefore
vanish in the case of normal diffusion (κ ¼ 0). In this case
the FACT reduces to CFðτÞ ¼ Cdiag

F ðτÞ1 ¼ 1
2
hFðτÞ · Fð0Þi1,

which is the usual FACF in normal systems.
The diagonal and off-diagonal elements of the FACT are

plotted in Fig. 1 as a function of time. We first consider the
behavior of the diagonal elements of the tensor in Fig. 1(a),
which correspond to the usual FACF for odd-diffusive
systems. For small values of κ, the FACF is a positive,
monotonically decaying function of time, qualitatively
similar to a normal diffusive system. For larger values of
κ, however, a new feature appears in the FACF: it crosses
through zero and hence becomes negative, indicating an
anticorrelation of the force. The timescale of the force
reversal on a tracer particle, i.e., when the FACF becomes
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negative, depends strongly on κ, as can be seen in the inset
of Fig. 1(a). There exists a numerically obtained threshold
κth ≈ 0.88 below which the FACF is strictly positive. The
off-diagonal elements of the FACT are shown in Fig. 1(b).
Unlike the diagonal elements, which diverge as t → 0,
the off-diagonal elements remain finite. Specifically
they remain positive for all κ and decay monotonically
in time.
It is interesting to investigate the short- and long-time

behavior of the elements of the FACT. Using the asymptotic
behavior of the modified Bessel functions K0 and K1, see
SM [4] for details, from Eqs. (5) and (6) we have analytical
access to the behavior on timescales t ≪ τ0 and t ≫ τ0, i.e.,
s ≫ 1 and s ≪ 1 in the Laplace domain, respectively. At
short times, the FACF behaves like Cdiag

F ðτÞ ≃ τ−1=2, as
shown in Fig. 1(a), and is independent of κ. Here, ≃ is used
to denote asymptotic proportionality. The long-time behav-
ior of the FACF can be obtained from the s ≪ 1 expansion
and behaves asymptotically as

C̃diag
F ðsÞ ∼ 2ϕ

β2D0

1

1þ κ2

�
1þ 1 − κ2

1þ κ2

�
γ − lnð2Þ þ lnðsÞ

2

�
s

þ 1 − 6κ2 þ κ4

8ðκ2 þ 1Þ3 s2ln2ðsÞ
�
; ð7Þ

for s → 0 and where γ ¼ 0.5772 is the Euler-Mascheroni
constant. For κ ¼ 0, the asymptotic behavior of C̃diag

F
coincides with the form reported for related 2D Lorentz

gas systems [68]. Furthermore, from Eq. (7) it can be seen
that the long-time behavior of Cdiag

F ðτÞ strongly depends on
κ. The FACF decays as τ−2 for all κ except for κ ¼ 1, at
which the leading order contribution vanishes in Eq. (7) and
Cdiag
F ðτÞ ≃ τ−3 lnðτÞ, as shown in Fig. 1(a) [69,70]. The

ordinary algebraic long-time decay ≃τ−2 (κ ≠ 1) is con-
sistent with the general prediction of a decay ≃τ−ðd=2þ1Þ,
d ¼ 1, 2, 3, for correlation functions in systems, which
do not conserve momentum [71,72]. This universal
behavior was theoretically and numerically exhaustively
demonstrated specifically for the 2D Lorentz gas
model [68,73–76]. In three dimensions, the decay of the
correlation functions ≃τ−5=2 [21,77–80] could recently
be demonstrated computationally [24]. In contrast, the
short-time behavior ≃τ−1=2 is independent of dimension-
ality and attributed to the hard interactions between the
particles [21,78].
The asymptotic short-time behavior of Coff

F ðτÞ turns out
to be independent of time but depends linearly on κ,
Coff
F ðτÞ ≃ κτ0, as can be seen in Fig. 1(b). Such a scaling

of the off-diagonal elements with κ at short times has been
recently derived by Yasuda et al. in Ref. [81] for odd
Langevin systems. The authors also pointed out that
this could be useful for estimating the odd-diffusion para-
meter in experiments. The asymptotic long-time behavior
of Coff

F ðτÞ shows a monotonic decay in time and also
depends on κ, Coff

F ðτÞ ≃ κτ−2=ðκ2 þ 1Þ2, as can be seen in
Fig. 1(b).

FIG. 1. Double-logarithmic plot of the diagonal and off-diagonal elements of the force autocorrelation tensor (FACT) of interacting
hard disks as a function of reduced time τ ¼ t=τ0, where τ0 ¼ σ2=ð2D0Þ. (a) The diagonal elements of the FACT Cdiag

F ðτÞ, corresponding
to the force autocorrelation function (FACF), can turn negative. The FACF diverges in the limit τ → 0 as Cdiag

F ðτÞ ≃ τ−1=2. At long times
the FACF scales as Cdiag

F ðτÞ ≃ τ−2. For κ ¼ 1 we find an exceptional long-time behavior, where Cdiag
F ðτÞ ≃ τ−3 lnðτÞ. The inset shows the

zero-crossing time τc of C
diag
F ðτÞ as a function of κ, which in the main figure is marked by red circles. The onset of the anticorrelation

corresponds to κ > κth ≈ 0.88. (b) The off-diagonal elements of the FACT Coff
F ðτÞ are independent of time in the short-time limit

Coff
F ðτÞ ≃ κτ0 and are directly proportional to κ. In the long-time limit, they scale similarly to the diagonal elements as Coff

F ðτÞ ≃ τ−2 for
all κ. The inset in (b) shows typical configurations after a collision of particles, where the orientational change of the force (orange
arrow) Fi ¼ FðτiÞ, i∈ f0; 1; 2; 3g of the tagged particle (red) is indicated. The black arrows thereby indicate a possible trajectory from
one frame to the next.
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In the low-concentration system studied here, only two-
body correlations are important. Despite this, the FACF can
turn negative as shown in Fig. 1. Furthermore there even
exists a range of κ∈ ðκth; 1Þ for which the FACF exhibits
not one but two zero crossings, as shown in Fig. 2. It
appears that for κ slightly larger than κth ≈ 0.88, which is
obtained from numerical inversion of Eq. (5), the FACF
first becomes anticorrelated (first zero crossing) in time
before it crosses the time axis again (second and last zero
crossing). Here, at long times, the FACF decays to zero
from above. We have numerically inverted the Laplace
transform over much longer times than shown here and did
not find more than two zero crossings. This “temporal
oscillation” in the FACF ceases to exist for κ ≥ 1. For
κ > 1, the asymptotic expansion in Eq. (7), transformed
back into time domain, is strictly negative and therefore the
FACF decays to zero from below, i.e., the second zero
crossing vanishes (see also inset in Fig. 2).
Green-Kubo relation for the self-diffusion coefficient.—

The self-diffusion coefficient Ds can be obtained from
the velocity autocorrelation function (VACF) CvðτÞ ¼
hvðτÞ · vð0Þi=2, where vðτÞ ¼ dx=dτ and x is the position
of the tagged particle as the time integral

Ds ¼
Z

∞

0

dτCvðτÞ; ð8Þ

a Green-Kubo relation between an equilibrium autocorre-
lation function (CvðτÞ) and a transport coefficient (Ds) [1].
In normal diffusive systems, the VACF is related to the

FACF. In contrast, in an odd-diffusive system, the know-
ledge of the FACF alone is not sufficient to calculate the
VACF. This is despite the fact that the system is isotropic.
In fact, one requires the entire FACT to calculate the VACF.
We show in SM [4] that in odd-diffusive systems, the VACF
can be written as

CvðτÞ ¼ D0

�
δþðτÞ −D0β

2CFðτÞ
�
; ð9Þ

where

CFðτÞ ¼
1

2

1

D2
0

ðD2ÞT∶ CFðτÞ; ð10Þ

and where the double contraction is defined as
A∶B ¼ P

2
α;β¼1 AαβBβα. δþð·Þ is the one-sided delta dis-

tribution; see also SM [4]. We refer to CFðτÞ as the
“generalized” force autocorrelation function (gFACF),
which reads

CFðτÞ ¼ ð1 − κ2ÞCdiag
F ðτÞ − 2κCoff

F ðτÞ: ð11Þ

For normal diffusive systems (i.e., κ ¼ 0), CF reduces to
the ordinary FACF. Note that even though the gFACF is
diverging for all κ ≠ 1 in τ → 0 in the hard-disk system, the
function remains integrable. This is of physical significance
since the integral of the gFACF captures the effect of
collisions on the self-diffusion as we see from the Green-
Kubo relation Eq. (8) together with Eq. (9).
The self-diffusion coefficient Ds can be obtained from

the time integral of Eq. (9) or by using the limit theoremR∞
0 fðtÞ dt ¼ lims→0f̃ðsÞ in Eq. (7) for C̃diag

F and similarly
for C̃off

F , which yields

lim
s→0

C̃diag
F ðsÞ ¼ 1

κ
lim
s→0

C̃off
F ðsÞ ¼ 2ϕ

β2D0

1

1þ κ2
: ð12Þ

Together with Eqs. (9) and (11), this gives the self-
diffusion coefficient in an odd-diffusive system,

Ds ¼ D0

�
1 − 2ϕ

1 − 3κ2

1þ κ2

�
; ð13Þ

valid up to first order in area concentration ϕ for a system of
hard disks. This result was previously derived by us in
Refs. [33,82] by a different method.
For κ ¼ 0 the expression for Ds reproduces the known

result of normal diffusive systems of hard disks in two
dimensions Ds ¼ D0ð1 − 2ϕÞ [22,78]. The surprising
result of Ds in Eq. (13) is that the prefactor of ϕ can
change sign. This shows that odd diffusivity (κ > 0) results
in a cancellation of the ordinary collision-induced reduction

FIG. 2. Double-logarithmic plot of the absolute value of the
diagonal elements of the force autocorrelation tensor Cdiag

F ðτÞ of
interacting hard disks as a function of reduced time τ ¼ t=τ0,
where τ0 ¼ σ2=ð2D0Þ. Investigating the regime κ∈ ½0.88; 1.0�,
we find oscillatory behavior of Cdiag

F ðτÞ. At short times Cdiag
F ðτÞ

starts as a positive function, turns negative, and after a second
zero crossing becomes positive again. The inset shows the zero-
crossing times τc of Cdiag

F ðτÞ as a function of κ in a linear-
logarithmic plot, which in the main figure are marked as red
circles. The oscillatory behavior starts at κ ≥ κth ¼ 0.88, whereas
the second zero crossing drifts to infinity as κ → 1. For κ > 1,
Cdiag
F ðτÞ only shows one zero crossing and remains anticorrelated

for the remaining τ → ∞ [see also inset in Fig. 1(a)].
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of the self-diffusion. For κ ¼ κc ¼ 1=
ffiffiffi
3

p
, up to first order

in the area fraction, the effect of the collisions on the self-
diffusion vanishes (Ds ¼ D0), meaning that on long time
and length scales hard disks appear to diffuse as non-
interacting particles. For κ > κc, collisions surprisingly
increase the self-diffusion coefficient: the system mixes
more efficiently.
It is natural to ask whether our findings can be extended

to three dimensions. However, in three dimensions, odd
systems cannot be isotropic because the plane in which the
rotation takes place breaks isotropy [29,34,83]. We inves-
tigated the self-diffusion in such a system via Brownian
dynamics simulations and found that the in-plane odd
diffusivity has no effect on the diffusion along the axes of
rotation, which turns out to be exactly the same as that of a
normal-diffusive system of hard spheres. The in-plane
diffusivity, however, shows the same κ-dependent behavior
as in a two-dimensional odd-diffusive system.
Discussion.—We analytically demonstrated that equilib-

rium correlation functions can be nonmonotonic and even
oscillatory in overdamped systems. This finding is at odds
with the statement that in an equilibrium system the
correlation function and all its derivatives decay monoton-
ically [19,20]. While the latter holds in systems where the
time evolution is described by a Hermitian Fokker-Planck
operator [3], for odd systems this is not applicable due to
their intrinsic antisymmetric off-diagonal elements in the
diffusion tensor (1).
Our work shows that rich physics is to be explored in

equilibrium, odd-diffusive systems. In normal-diffusive
systems, for instance, there exists a crossover between
two diffusive regimes: short-time diffusion with diffusivity
D0 and long-time diffusion with Ds < D0 [25]. That
the long-time self-diffusion coefficient is smaller than
the short-time is indicative of the slowing down of the
dynamics of the tracer particle in the crossover. In odd-
diffusive systems, in contrast, the dynamics can be
enhanced, which is reflected in the anticorrelated force
autocorrelations. The anticorrelation can be physically
interpreted in terms of reversal of the force experienced
by a tagged particle such that rather than impeding,
collisions with other odd-diffusive particles enhance the
motion of the tagged particle; see also the inset in Fig. 1(b).
Even though qualitatively this mutual rolling of particles
explains the enhancement of self-diffusion with collisions
in an odd-diffusive system through the reversal of
force [33], a detailed mechanism is still elusive. To this
end, we believe it will be interesting to investigate the
structural rearrangements that occur in an odd-diffusive
system and contrast them with those in a normal-diffusive
system. We further expect that the unusual behavior could
also have implications for the rheological properties of odd
fluids, such as viscosity.
With increasing experimental interest in systems such as

spinning biological organisms [45], chiral fluids [46,47],

and colloidal spinners [48], our work will contribute to the
broadening interest of the physics community in these
systems, especially in the novel and interesting way
interactions modify the particle dynamics here. Lastly,
since exact analytical results are rather rare in interacting
systems, our work may serve as a reference to validate
approximate theories for dense systems or computer
simulations.
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