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The quantum critical properties of interacting fermions in the presence of disorder are still not fully
understood. While it is well known that for Dirac fermions, interactions are irrelevant to the noninteracting
infinite randomness fixed point (IRFP), the problem remains largely open in the case of Majorana fermions
which further display a much richer disorder-free phase diagram. Here, pushing the limits of density matrix
renormalization group simulations, we carefully examine the ground state of a Majorana chain with both
disorder and interactions. Building on appropriate boundary conditions and key observables such as
entanglement, energy gap, and correlations, we strikingly find that the noninteracting Majorana IRFP is
very stable against finite interactions, in contrast with previous claims.
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Introduction.—The interplay of disorder and interactions
in low dimensional systems is one of the most fascinating
problem of condensed matter physics, with highly non-
trivial open questions, the many-body localization (MBL)
being a remarkable example [1,2]. One of the key points of
MBL physics concerns the stability of a noninteracting
Anderson insulator against interactions at (in)finite temper-
ature, a question already raised in the pioneering works
[3–5]. Since then, a significant and flourishing activity has
continued to explore these questions, but with controversial
predictions [6–11].
In this Letter, we propose to take a small detour by

focusing on the different but closely related problem of the
low-energy properties of the interacting Majorana
chain (IMC) model [12–16] in the presence of disorder.
It is governed by the following one-dimensional (1D)
Hamiltonian

H ¼ −
X

j

ðitjγjγjþ1 þ gγjγjþ1γjþ2γjþ3Þ; ð1Þ

with random couplings tj and constant interaction g. The

operators γj are Majorana (real) fermions (γj ¼ γ†j and
fγi; γjg ¼ 2δij) from which Dirac (complex) fermions can
be constructed as pairs of Majoranas such that 2cj ¼
γ2j−1 þ iγ2j, yielding the Dirac fermions version of the
IMC model Eq. (1) which can also be seen as the
interacting counterpart of the Kitaev chain model
[17,18]. There is a third possible formulation in terms of
Pauli matrices [18]

H ¼
X

l

½Jlσxlσxlþ1 þ hlσ
z
l þ gðσzlσzlþ1 þ σxlσ

x
lþ2Þ�; ð2Þ

with Jl ¼ t2j and hl ¼ t2j−1. In the absence of interactions
(g ¼ 0), this problem simply boils down to the celebrated
transverse field Ising chain (TFI) model [21]. In the random
case, if couplings and fields are such that ln J ¼ ln h (where
½� � �� stands for disorder averaging), the so-called infinite-
randomness fixed point (IRFP) [22–24] describes the
physics, as carefully checked numerically both for ground
state [25,26] and excited states [27,28].
Infinite-randomness hallmarks.—To fix the context, we

first list some key properties of the 1D IRFP. (i) Time and
space are related in a strongly anisotropicway,with a dynami-
cal critical exponent z ¼ ∞. As a result the lowest energy gap
Δ does not self-average, is broadly distributed, and exponen-
tially suppressed with the chain length N, such that

lnΔ ∼ −
ffiffiffiffi
N

p
: ð3Þ

(ii) There is also lack of self-averaging for the spin-spin
correlations: the average decays algebraically, while the
typical vanishes much faster, as a stretched exponential

hσxlσxlþri ∼ rð
ffiffi
5

p
−3Þ=2 and lnhσxlσxlþri ∼ −

ffiffiffi
r

p
: ð4Þ

(iii) Despite the absence of conformal invariance, the Rényi
entanglement entropy (EE) grows logarithmically with the
subsystem length n, as in the clean case [29–31], following

SqðnÞ ¼
ceff
6

lnðnÞ þ sq; ð5Þ

for open boundaries, sq being a nonuniversal constant. The
key object here is the so-called “effective central charge” ceff ,
which for the IRFP is given by cIRFPeff ¼ c ln 2 [32–36], where
c is the central charge of the underlying clean fixed point.
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Such an unbounded entanglement growth Eq. (5)
strongly contrasts with MBL or Anderson insulators for
which a strict area law is observed, even at infinite
temperature, with an EE bounded by the finite localization
length [28,37]. Here, the IRFP is only marginally localized,
i.e., that all single-particle states have a finite localization
length, except in the band center where the localization is
stretched exponential [38–40].
IRFP and interactions.—Two historical examples of

noninteracting IRFPs are the 1D disordered TFI model
[22,23], and the random-bond XX chain [39]. Interestingly,
both models can be seen as the opposite sides of the same
coin: noninteracting Majorana (real) vs Dirac (complex)
fermions with random hoppings. Although the effect of
interactions was quickly understood as irrelevant in a
renormalization group (RG) sense [39,41] for free Dirac
fermions, the story turned out to be quite different in the case
ofMajoranas. In his seminalwork, Fisher first suggested that
interactions should also be irrelevant at the IRFP in the
Ising-Majorana case [23], but this issue remained essentially
unexplored for many years, before reemerging only recently
in theMBL context [42–49]. There at high energy, the IRFP
was found to be destabilized by weak interactions toward a
delocalized ergodic phase [46–48].

Despite this progress made at high energy, the status of
the ground state of the disordered IMC model Eq. (1) is still
controversial, with rather intriguing recent conclusions
[14,15] contrasting with previous claims [23]. Building
on density matrix renormalization group (DMRG) simu-
lations Milsted et al. [14] observed a saturation of the EE
for repulsive interaction g > 0, in agreement with Karcher
et al. [15] who further concluded that the system gets
localized and spontaneously breaks the duality symmetry
of the IMC Hamiltonian, for any g > 0. Results in the
attractive regime g < 0, again based on EE scaling, are
more ambiguous: Ref. [14] concludes that IRFP is stable,
while Ref. [15] states on the contrary that disorder becomes
irrelevant and that the clean fixed point physics is
recovered.
Main results and phase diagram.—Our Letter falls

within this puzzling and stimulating context. By pushing
the limits of DMRG simulations for disordered quantum
systems [50], we carefully and deeply explore the ground-
state properties of the IMC model Eq. (1) in the presence of
both interactions and randomness. Our main result, sum-
marized in Fig. 1, is that the IRFP is robust and stable to
finite interactions. While in the clean case [13,16], a
succession of critical phases is observed upon varying g,
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FIG. 1. Overview of the interacting Majorana chain model Eq. (1). Top and bottom arrows present the phase diagrams for both clean
and disordered models. The clean case (see Ref. [16]) displays three critical phases with central charges c ¼ 1=2 and 3=2. Instead, the
random case displays a unique infinite randomness criticality, as demonstrated by representative cases in the various panels. Panels (a)
and (b) show the von Neumann entanglement entropy SvNðnÞ scaling as a function of subsystem length n, for g ¼ 0.2 and g ¼ 1 for
which the clean scalings (with c ¼ 0.5 and c ¼ 1.5) are compared with the disorder-average EE for various lengths N, which exhibit the
IRFP scaling with ceff ¼ 0.5 ln 2 (see also Fig. 2 below). Panel (c) presents another smoking gun of IRFP with the universal collapse for
the distribution of the lowest gap PðlnΔ= ffiffiffiffi

N
p Þ, displayed for g ¼ 1 and various system sizes N, see also Fig. 3. Panels (d) and (e) show

the decay of the average and typical magnetizations, away from the boundary, for two representative cases g ¼ 0.5 and g ¼ 2 showing
perfect agreement with IRFP criticality, see also Fig. 4 for more details and results. The yellow stars on the top and bottom arrows denote
the onset of incommensurability, further discussed in Supplemental Material [18].
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with central charges c ¼ 1=2; 3=2, adding disorder to the
Majorana hopping terms is a relevant perturbation. For the
range of interactions considered in this Letter, the non-
interacting IRFP appears to be the unique attractive fixed
point, thus reinforcing the original expectation [23]
that interactions are therefore irrelevant to the free
Majorana IRFP.
Our conclusions are based on the complementarity of

key observables used to probe the various aforementioned
properties of the IRFP. This is exemplified in Fig. 1 where
the von Neumann EE (a) and (b), the low-energy gap (c),
and the average and typical order parameters (d) and (e) are
displayed across the various regimes of interaction strength,
all panels showing one of the smoking gun features
characteristic of the IRFP.
In the rest of the Letter, we present and discuss very

carefully our numerical results building on these three
pivotal observables, several technical aspects being detailed
in Supplemental Material [18]. Let us, however, mention
that we simulate the IMC model Eq. (1) in its “magnetic”
version Eq. (2), and mostly focus on the repulsive g > 0
regime. Although interesting effects are certainly expected
away from it, we stick to the self-dual line ln J ¼ ln h,
independently drawing Ji and hi from a box ½1 −W; 1þ
W� with W ¼ 0.9 [51]. A very important issue, sometimes
overlooked, concerns the number of random samples which
we take as large as possible (typically between 3000 and
8000). This is particularly meaningful at IRFPs where rare
events play a pivotal role, and broad distributions are
crucially important to describe the physics.
Entanglement entropy.—Before getting to the EE itself,

we start with a brief discussion of the boundary conditions,
illustrated for the noninteracting case in Fig. 2(a). Instead of
open boundary conditions (OBC), most commonly used in
the DMRG realm, here we shall use the so-called fixed
boundary conditions (FBC), obtained by locally pinning
the boundary spins with a strong longitudinal field [53,54],
thus artificially breaking the parity symmetry of the IMC
Hamiltonian. As a result, the FBC entropy is reduced from
its OBC value by the Affleck-Ludwig boundary term [55],
such that SFBCvN ¼ SOBCvN − ln

ffiffiffi
2

p
, but does not loose its uni-

versal logarithmic scaling. This becomes clear in Fig. 2(a)
for free fermions (g ¼ 0) where DMRG and exact diago-
nalization (ED) data are successfully compared in the clean
case. Interestingly, we further observe that such a boundary
entropy also shows up for the free-fermion IRFP, as
evidenced in the same panel (a) of Fig. 2 where OBC
ED data match with FBC DMRG after a subtraction of the
similar ln

ffiffiffi
2

p
term.

Let us now present the most important result of the
Letter, displayed in Fig. 2(b) where for finite interaction
strengths g ≠ 0, the disorder-average EEs show excellent
agreement with the noninteracting IRFP logarithmic
growth Eq. (5), with ceff ¼ ðln 2=2Þ. Remarkably, this
remains true for the entire regime of study −1 ≤ g ≤ 2.
This is even more clear from the inset where the g

dependence of ceff is extracted from fits to the form
Eq. (5) over successive sliding windows. This result deeply
contrasts with previous works [14,15] where a saturation of
EE was observed and interpreted as a consequence of
localization [50].
It is furthermore noteworthy that all finite interaction

results show the same tendency to flow to the noninteracting

(b)

(a)

FIG. 2. DMRG and ED results for the von Neumann entropy
scaling as a function of subsystem size n for (a) noninteracting,
and (b) interacting Majorana fermions, Eq. (1). (a) g ¼ 0, clean
chain results (upper data) illustrate how OBC ED data match with
FBC DMRG (after subtracting the boundary entropy ln

ffiffiffi
2

p
). In

the random case, a similar agreement is observed for the disorder-
average (after the same subtraction), the dominant scaling being
now controlled by Eq. (5) with an “effective central charge”
ceff ¼ ðln 2=2Þ (gray line), a finite-size bending down is observed
when half-chain is approached. (b) g ≠ 0 DMRG results shown
for subsystems 2 ≤ n ≤ N=3, various interaction strengths (in-
dicated on the plot), and different chain lengths (colored
symbols). The agreement with the IRFP scaling (gray line
Eq. (5) with ceff ¼ ðln 2=2Þ) is excellent in all cases, once the
asymptotic regime is reached beyond a finite crossover length
scale [28,52]. Inset: g dependence of ceff extracted from fits to the
form Eq. (5) over successive sliding windows ending at nmax. All
data agree with the asymptotic log scaling controlled by the
prefactor ceff ¼ ðln 2=2Þ.
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IRFP scaling, with a unique effective central charge fully
compatiblewith ceff ¼ ðln 2=2Þ, even in the repulsive regime
where the clean case displays c ¼ 3=2 for 0.29 ≤ g ≤ 1.3, as
clearly visible in Fig. 1(b) for a comparison between clean
and disordered cases at g ¼ 1.
Low-energy gap.—In order to double-check the IRFP

hypothesis over the broad regime of interaction strengths,
we also focus on the lowest energy gap Δ above the ground
state, and in particular we aim to check the very peculiar
exponentially activated scaling law defined by Eq. (3),
which signals a dynamical exponent z ¼ ∞. In addition,
the probability distribution of these gaps is expected to
display broadening and a universal scaling form, as shown
for free fermions [25,56].
Here, for the interacting model, we also observe, see

Fig. 3(a) for g ¼ 0.5, a very clear broadening of the
distributions PðlnΔÞ upon increasing the system size,
which is a strong evidence that z ¼ ∞, as predicted for
the IRFP. Furthermore, the same data show an excellent
collapse in Fig. 3(b) when histogrammized against
ðlnΔÞ= ffiffiffiffi

N
p

, without any adjustable parameter. We have
checked that this remains true for other values of the
interaction strength (in the range of study), as shown for a
few values of g in the inset of Fig. 3(b). There, one sees that

the typical gap elnΔ perfectly obeys the activated scaling
law Eq. (3). The noninteracting case (ED data for g ¼ 0) is
also displayed for comparison.
Correlations.—The last evidence for infinite randomness

physics is captured by the spin correlations, as given by
Eq. (4). The absence of self-averaging is again reflected
here in the clear qualitative difference between mean and
typical decays of pairwise correlations: power law with a
universal exponent η ¼ ð3 − ffiffiffi

5
p

=2Þ ≈ 0.382 vs stretched
exponential. This IRFP feature can also be nicely captured
with FBC. Indeed, when the edge spins are fixed, the

following decrease of the order parameter is expected away
from the boundary

jhσxjij ∼ j−η=2 and ln jhσxjij ∼ −
ffiffi
j

p
: ð6Þ

This behavior is readily observed in Fig. 4 where panels (a)
and (b) show a comparison between average and typical
decays for a few representative values of the interaction
strength. The extracted exponent governing the average is
fully consistent with the universal IRFP value η ¼ 2 − ϕ
[22], where ϕ is the golden mean. The typical decay, while
suffering from finite size effects, also appears to be in good
agreement with a stretched exponential vanishing.
While the mean of the absolute value jhσxjij does decay

algebraically, the mean magnetization vanishes much faster
hσxji ∝ exp ð−j=ξÞ cosðqjÞ, with antiferromagnetic corre-
lations (q ¼ π) for g ≤ g⋆, which then turns incommensu-
rate (π=2 < q < π) beyond g⋆ ≈ 0.18, see Ref. [18].
Discussions and conclusions.—In the strong-disorder

RG (SDRG) framework [22–24], adding (moderate) inter-
actions to the random-bond XX chain only brings negli-
gible modifications to the RG recursion relations, and the
IRFP has the very same form as in the noninteracting XX
case, notably for the Heisenberg chain [39]. However, this
is less obvious for the interacting version of the transverse
field Ising model, as recently discussed by Monthus [45]
who showed that the SDRG treatment of disordered
interacting Majorana fermions generates higher-order
couplings, which prevents direct conclusions about the
effects of interactions, a situation also encountered for

(a) (b)

(c)

FIG. 3. DMRG results for the lowest energy gap Δ. (b) Dis-
tribution PðlnΔÞ collected at g ¼ 0.5 from 4000 samples for
various system sizes, as indicated on the plot. The broadening
upon increasingN is an IRFP signature, best seen in (a) where the
distributions of rescaled gaps PðlnΔ= ffiffiffiffi

N
p Þ show very good

collapse. (c) The typical gap plotted vs
ffiffiffiffi
N

p
for g ¼ 0; 0.5; 1,

shows perfect agreement with the activated IRFP scaling Eq. (3).

(a) (b)

FIG. 4. DMRG results for the decrease of the order parameter
away from the boundary j, see Eq. (6). (a) Power-law decay of the
disorder-average jhσxjij shown for four different values of the
interaction g, all in excellent agreement with the IRFP prediction
η=2 ¼ 1 − ϕ=2 ≈ 0.191 (gray line). Inset: estimated exponent
η=2 plotted against g. (b) The stretched exponential vanishing of
the typical value expðln jhσxjijÞ is fully compatible with the IRFP
scaling (black lines).
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more general random XYZ models [57] as well as for
MBL [42–44].
In such a puzzling context, our numerical work sub-

stantially clarifies the problem, providing a simple picture
which contrasts with previous works [14,15]. Building on
state-of-the-art DMRG simulations, appropriate boundary
conditions, and a very large number of samples, we
demonstrate that the noninteracting IRFP is stable against
attractive and repulsive interactions between Majorana
fermions. This solves a relatively old problem, and opens
interesting questions regarding the stability of the margin-
ally localized [40] IRFP far from the ground state where
instead, weak interactions are expected to delocalize and
restore ergodicity, at least in the infinite-temperature limit
[46–48], thus suggesting a possible critical point at finite
energy density above the ground state.
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