
Reexamination of Damping in Sliding Friction

Shuyu Huang ,1,3,* Zhiyong Wei ,1,* Zaoqi Duan ,1,* Chengdong Sun ,1,* Yongkang Wang,1 Yi Tao ,1 Yan Zhang,1

Yajing Kan ,1 Ernst Meyer ,3 Deyu Li ,2,† and Yunfei Chen 1,‡
1Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments,

School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1592, USA

3Department of Physics, University of Basel, Basel, Switzerland

(Received 8 January 2023; accepted 12 December 2023; published 30 January 2024)

Friction is responsible for about one-third of the primary energy consumption in the world. So far, a
thorough atomistic understanding of the frictional energy dissipation mechanisms is still lacking. The
Amontons’ law states that kinetic friction is independent of the sliding velocity while the Prandtl-
Tomlinson model suggests that damping is proportional to the relative sliding velocity between two
contacting objects. Through careful analysis of the energy dissipation process in atomic force microscopy
measurements, here we propose that damping force is proportional to the tip oscillation speed induced by
friction. It is shown that a physically well-founded damping term can better reproduce the multiple peaks in
the velocity-dependent friction force observed in both experiments and molecular dynamics simulations.
Importantly, the analysis gives a clear physical picture of the dynamics of energy dissipation in different
friction phases, which provides insight into long-standing puzzles in sliding friction, such as velocity
weakening and spring-stiffness-dependent friction.
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Even in rudimentary physics textbooks, the phenomeno-
logical Amontons-Coulomb friction law,Ff ¼ μkN, is often
included, stating that kinetic friction force (Ff) is equal to a
kinetic friction coefficient (μk) times the normal load (N)
and is independent of contact area and relative sliding
velocity [1–3]. However, until now it is still impossible to
derive this friction law from first principles and a thorough
understanding of the detailed dynamics of energy dissipation
at the atomic scale is still lacking. In fact, efforts withmodern
instruments, such as the surface force apparatus [4–6],
atomic force microscope (AFM) [7–11], and quartz crystal
microbalance [12], have observed a sliding-velocity-
dependent friction force that is obviously inconsistent with
the Amontons-Coulomb law. Meanwhile, atomistic models,
including the classical Prandtl-Tomlinson (PT) [13,14] and
Frenkel-Kontorova (FK) [15–17] models and various mod-
ifications [9,18], have been used to explain the velocity
dependence in sliding friction.While thesemodels have been
able to explain some experimental trends, they cannot
account for other important observations. So far, there is
no theoretical model that can predict kinetic friction force
over a wide sliding velocity range.
In an ultralow sliding velocity regime below several

hundred nm=s, the PT model can well reproduce the
velocity-independent stick-slip events observed in AFM
experiments [7,8,18]. However, the PT model prediction
quickly deviates from the experimental observation as the
sliding velocity increases to several μm=s, and modifica-
tions to the model have to be introduced to account for

experimental observations. For instance, to resolve the
velocity-dependent friction, a thermally activated PT
model [9] was proposed to explain the logarithmic exper-
imental trend [19], which is attributed to thermally actuated
transitions between neighboring potential wells [20–23].
Still, phenomena such as velocity weakening [24–26], and
especially nonmonotonic variations [27] in the mean
friction force, pose challenges to the theoretical under-
standing. The large number of experimental results deviat-
ing from the PTmodel indicate that the damping termmight
not correctly reflect the energy dissipation in sliding
friction. Here, through systematic AFMmeasurements over
a wide range of sliding velocity under different normal
loads, we propose that damping force is proportional to the
tip oscillation speed, which better reflects the kinetic energy
dissipated by phonons and recaptures both experimental
and molecular dynamics (MD) results.
We measure the friction force as a silicon tip slides over a

piece of molybdenum disulfide (MoS2) flake along the
zigzag direction as shown schematically in Fig. 1(a). All
measurements are carried out in the ambient conditions with
a temperatureof∼25°C and a relative humidity of∼25%(See
experimental details in the Supplemental Material [28]).
Figure 1(c) plots the measured mean friction force versus
the substrate sliding velocity in the range from 8.14 to
122.07 μm=s under three different normal loads of 10, 30,
and 60 nN, respectively. The mean friction force displays an
increasing trend with the load but exhibits a nonmonotonic
profile with the sliding velocity. As the sliding velocity
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increases beyond ∼25 μm=s, several peaks in the mean
friction force can be clearly identified, similar to what we
recently reported for the study with a graphite substrate [27].
To understand the atomistic mechanisms that lead to the

observed friction force, we first try to fit the experimental
data using the classical PT model. As shown in Fig. 1(b),
the PT model describes an AFM tip attached to an anchor
through a spring sliding over a substrate that is represented
by a sinusoidal potential. If we assume that the anchor is
stationary and the original point is taken as the location of
the tip under relaxed condition and the substrate is moving
with a constant velocity vs along the x direction, the one-
dimensional PT model can be written as

mẍþmμðẋ − vsÞ þ ktx ¼ − ∂Uðx; tÞ
∂x

: ð1Þ

Here x is the tip displacement. m and kt are the mass and
the spring constant, which correspond to the effective mass
of the tip and the torsional spring constant for the cantilever
along the sliding direction in the AFM setup, respectively.
kt andm can be determined by experiments (see Secs. 4 and
8 of the Supplemental Material [28]). μ is the damping
coefficient describing the frictional energy dissipation, and
U is the corrugated surface potential given by

Uðx; tÞ ¼ − u0
2
cos

�
2π

�
x − vst

a

��
; ð2Þ

where a and ðu0=2Þ are the period length and amplitude of
the corrugated potential, respectively. u0 is related to the
normal load and can be fitted from the corresponding
experimental results, which yields 1.02, 1.38, and 1.98 eV
for the normal load of 10, 30, and 60 nN, respectively. The
damping coefficient μ is related to the damping ratio (β)
defined as β ¼ ðμ=μcÞ, where μc is the critical damping
coefficient of the system calculated by μc ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkt=mÞp
.

The instantaneous friction force can be reflected by the
spring force, Ff ¼ −ktx. A damping ratio of 0.14 yields the
best fitting for all three normal load cases, which suggests
that the setup with a tip sliding over the MoS2 substrate
corresponds to an underdamping system [35].
Based on these parameters, a fourth-order Runge-Kutta

algorithm is used to solve the PT model [36], and the results
are shown in Fig. 1(c). The PT model yields an increasing
friction force in the velocity range of 8 to 25 μm=s, which
is consistent with the experimental results; however, the
escalation slopes for all three normal loads are larger than
those of the experimental results. The deviation from the
experimental data becomes more unacceptable as the
sliding velocity increases beyond 25 μm=s. To further
understand why the PT model fails to recapture the
experimental results, we examine the damping term in
Eq. (1), which is proportional to the relative sliding velocity
between the tip and substrate, and the corresponding
dissipated energy, EPT

d , can be expressed as

EPT
d ¼

Z
t

0

mμðẋ−vsÞ · ðẋ−vsÞdt: ð3Þ

The damping force of mμðẋ − vsÞ is a linear-response
type dissipative force, which is only valid at low sliding
velocity [27,37]. The second term ðẋ − vsÞdt stands for the
relative displacement between the substrate and tip over a
differential time dt. Equation (3) implies that there exists a
dissipative force on the interface between the elastic tip and
substrate to dissipate the kinetic energy of relative motion.
Our MD simulation model demonstrates that the in-plane
component of the combined force over the entire interfacial
molecule-molecule interactions describes exactly the fric-
tion force, which indicates that only intermolecular force
exists between two contacting elastic objects under a
normal load (Sec. 1 in the Supplemental Material [28]).
It should be noticed that the intermolecular force is only
responsible for the conversion between the kinetic and
potential energy. Contrary to the assumption in the classical
PT model, there is no dissipative force presenting at the
interface between two contacting objects to dissipate their
kinetic energy. Instead, the energy dissipation happens in
the bulk, which is mediated by the material internal degrees
of freedom in the two contacting elastic objects.

FIG. 1. Schematic illustration of (a) an AFM used to measure
friction force as its tip slides over a MoS2 substrate. (b) A
simplified friction model for the friction force measurement with
an AFM, which describes the energy dissipation process in sliding
friction. (c) The measured friction force (dots) and the best fitting
with the classical PTmodel (solid lines). (d) Themeasured friction
force and the fitting with the proposed phononic friction (PF)
model. The scan size in the experiments is 5 × 5 μm2. The
periodic length along the sliding direction is determined to be
a ¼ 0.316 nm. Note that fr in (c) and (d) stands for the torsional
resonant frequency (fr) of the cantilever, which depends on the
sliding velocity because the contact stiffness varies with the sliding
velocity. This implies that the tip-substrate system at each sliding
velocity has a specific resonant frequency fr.
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We simplify the cantilever tip in an AFM as a spring-
damper sphere, the substrate can be treated as an infinite
substrate. Carefully analyzing the dynamic response of the
sphere sliding over the substrate, we find that energy
barriers are formed along the sliding direction due to the
intermolecular interactions among the numerous interfacial
molecules. It is the intermolecular force that resists the
relative motion and deforms the elastic substrate and
cantilever to accumulate potential energy. Once the poten-
tial energy is accumulated high enough to overcome the
energy barrier, the slip phase starts. In the slip process, part
of the accumulated elastic energy in the infinite substrate is
released as elastic waves transporting away as phonons that
never come back. For the spring-damper sphere, the
released potential energy is converted to the sphere kinetic
energy and dissipated by the cantilever internal damping.
The total dissipated energy can be expressed as

Ed ¼
Z

t

o
mμtẋ2dtþ

Z
t

0

Xn
i¼1

Mμiðẋi − vsÞ2dt; ð4Þ

where t stands for time, μt stands for the effective cantilever
internal damping coefficient, μi and ẋi stands for the
damping coefficient and instantaneous velocity of the atom
i as shown in Fig. S4 in the Supplemental Material [28].
The first term stands for that the energy is dissipated by the
cantilever tip due to the material internal damping. The
second term stands for the released potential energy in the
substrate as phonons.
As shown in Fig. 1(b), the interaction between the atoms

of the sphere and the substrate is accurately captured
using the Lennard-Jones (LJ) potential. To approximate
the overall interaction that encompasses the entire sphere
and substrate, a sinusoidal potential can be employed,
which is derived by summing all atom-atom interactions,
as shown in Eq. (2). In the whole stick-slip process, the
interaction between the sphere and substrate is responsible
only for the conversion between the potential and kinetic
energy. As discussed in the Sec. 2 of the Supplemental
Material [28], the released potential energy in the spring-
damper sphere is proportional to the released potential
energy in the substrate. We can employ an effective
material internal damping coefficient, μ, to characterize
the energy dissipation by the internal degrees of freedom
within the friction system.

Ed ¼
Z

t

0

mμẋ2dt¼
Z

t

o
mμtẋ2dtþ

Z
t

0

Xn
i¼1

Mμiðẋi−vsÞ2dt:

ð5Þ

Here μ stands for an effective damping coefficient to
describe the energy dissipated by the material internal
damping in a friction system composed of two elastic
objects such as the tip and substrate in Fig. 1. More details

about the formula derivation can be found in the Sec. 2 of
the Supplemental Material [28]. ẋ is the tip oscillation
speed relative to its equilibrium position. In this way, the
damping coefficient μ has a clear physical meaning as that
the energy is dissipated by oscillations, i.e., phonons.
Integrating Eq. (5) with Newton’s second law, a phononic
friction model is proposed to describe the tip dynamical
response induced by the relative motion,

mẍþmμẋþ ktx ¼ − ∂Uðx; tÞ
∂x

: ð6Þ

In Eq. (6), the fundamental concept about frictional
energy dissipation has been altered from that in the PT
model as described by Eq. (1). The PT model suggests that
the relative motion directly determines how much energy is
dissipated as the damping force is directly proportional to
the relative velocity between the tip and substrate. In
contrast, Eq. (6) proposes that damping can only dissipate
the energy acquired by the tip from the relative motion,
which is more physically well founded because it precisely
reflects that the energy is dissipated as elastic waves, i.e.,
the phonons. If no energy is acquired by the tip, no energy
can be dissipated. The predicted results based on this
phononic friction model are shown in Fig. 1(d), which fit
the experimental data very well in the entire velocity range
from 8 to 122 μm=s, and also recapture the frictional
resonances to a much better level than the PT model.
This strongly suggests that the proposed phononic friction
model better reflects the actual energy dissipation process.
We can also use the phononic friction model to fit MD
simulation results, in which both the force magnitude and
peak positions can be well predicted (more details can be
found in Sec. 1 of the Supplemental Material [28]).
In the low-sliding-velocity range, the transient friction

force can be obtained by the AFM as shown in Fig. S10 [28].
However, with the increase of sliding velocity, the low
sampling frequency and inevitable noise in theAFMobscure
the dynamics evolution of the friction forcewith time, which
makes it difficult to understand thevariations of themeasured
friction force in Fig. 1(d). With the help of Eq. (6), we can
explain why the time-averaged friction force displays the
nonmonotonic variation with sliding velocity, which is also
frequently observed in the literature [24,27,38–42]. As
displayed in Fig. 1(d), with the increase of the sliding
velocity, the mean friction force displays (i) a monotonic
increase trend (<32 μm=s), (ii) multiple oscillations with
several peaks in the velocity range of 32 μm=s < vs <
89 μm=s, and (iii) a decreasing trend for vs > 89 μm=s.
At a low sliding velocity, such as vs ¼ 12 μm=s, the
instantaneous friction force calculated from Eq. (6) exhibits
a typical periodic stick-slip behavior with the same period
length as that of the substrate potential [Fig. 2(a)].
Interestingly, the instantaneous friction force displays
ringing oscillations after each slip event as shown in the
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highlighted yellow region in Fig. 2(a). Although the ringing
oscillations are frequently observed in previous studies,
their implications to energy dissipation have been rarely
discussed [43–47]. As such, we conducted fast Fourier
transform (FFT) analysis of the ringing oscillations, as
shown in the inset of Fig. 2(b). The FFT spectrum clearly
indicates a peak at the resonant frequency of the tip, fr,
which depends on the cantilever spring stiffness (kt) and
the tip-substrate contact stiffness (ku), and can be
expressed as [48]

fr ¼
1

2π

ffiffiffiffiffiffiffi
keff
m

r
¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kt þ ku

m

r
: ð7Þ

Here ku can be taken as the second derivative of the
substrate corrugated potential with respect to the tip
position. In fact, ku is not a constant, which strongly
depends on the sliding velocity and the tip position on
the substrate potential. More details about the value of
ku at each velocity is discussed in the Sec. 11 of the
Supplemental Material [28].
These ringing oscillations induce energy dissipation in

addition to the asymmetric stick-slip events and are
responsible to the fact that no friction force peak appears
at low sliding velocities. As shown in Fig. 2(b), the FFT of
the instantaneous friction force shows multiple peaks at the
washboard frequency (fwb ¼ vs=a) and its harmonics
(nfwb), which indicates that significant contributions to
the friction force come from excess phonons excited at not
only fwb but also its harmonics, as discussed in Ref. [27].
What is missing in Ref. [27] is why no friction peak appears
at relatively low sliding velocities, even when certain
harmonic frequency of fwb overlaps with the resonant

frequency. The ringing oscillations provide an explanation
for this. For example, at the sliding velocity at 12 μm=s, the
corresponding fwb is 37.97 kHz, far smaller than fr which
is 450.38 kHz. In this case, the tip has enough time to
dissipate the residual energy through the ringing oscilla-
tions in the stick phase before it engages in the next slip
event. As such, in the regime of vs < 25 μm=s, the ringing
oscillations are not able to overlap with the next slip event;
and therefore resonant vibration cannot occur even when
certain harmonic frequency of fwb is equal to the resonant
frequency.
As the sliding velocity increases, the oscillations persist

over the entire period. In this case, if fwb or its harmonics
overlaps with the tip resonant frequency, i.e., fr ¼ nfwb,
resonance occurs and the friction force experiences a local
peak. For example, when the sliding velocity is 31 μm=s,
fr ≈ 4fwb [as shown in Figs. 2(c) and 2(d) with fwb ¼
98.10 and fr ¼ 400.26 kHz), and the tip engages in
resonant vibrations, leading to a local peak in the friction
force as indicated by P2 in Fig. 1(d). In particular, for vs ¼
89 μm=s [corresponding to P3 in Fig. 1(d)], fr ¼ fwb ¼
281.89 kHz [Figs. 2(e) and 2(f)], the excitation frequency
is the same as the tip resonant frequency, which gives rise to
the maximum friction force in the entire measurement
velocity range. Once the sliding velocity vs exceeds
89 μm=s, fwb > fr, the dynamics of the tip becomes more
complex because the fast excitation rate from the substrate
potential is beyond the intrinsic rhythm of energy accu-
mulation and dissipation in the tip-spring system. In this
case, for example, at P4 with a sliding velocity of 109 μm=s
[as shown in Figs. 2(g) and 2(h)], the periodic length for the
instantaneous friction force is 3a. Under this condition,
during some stick-slip events, the substrate imparts more
potential energy to the spring while during other events the
substrate transfers little energy to the tip, which is evi-
denced by the low friction force between points 2
and 3 in Fig. 2(g). Notably, the 3a period does not qualify
such event as a triple slip, but only indicates that 3a is
required to constitute a complete cycle of energy accumu-
lation and release.
It has been widely believed that the slip phase makes

dominant contribution to energy dissipation in a stick-slip
friction cycle [2]. Based on the variations of the spring
force, a complete stick-slip cycle can be divided into three
phases: stick, slip, and ringing oscillation (more detailed
discussions can be found in Secs. 13 and 14 in the
Supplemental Material [28]). The dissipated energy in
each phase can be calculated by integrating the friction
power dissipation over time, as shown in Fig. 3 with gray,
green, and orange dots representing the dissipated energy in
slip, oscillation, and stick phases, respectively. This dis-
sipated energy for each sliding velocity is calculated over
the substrate sliding distance of three lattice constants. At
low sliding velocities (e.g., 12 μm=s), the stick, oscillation,
and slip phases contribute about 1%, 38%, and 61% to the

FIG. 2. The instantaneous friction force calculated from the
phononic friction model [Eq. (6)] and its corresponding FFT
spectrum at four representative sliding velocities: (a),
(b) vs ¼ 12 μm=s, (c),(d) vs ¼ 31 μm=s, (e),(f) vs ¼ 89 μm=s,
(g),(h) vs ¼ 109 μm=s. The insets in the right panel [(b) and (d)]
stand for the FFT spectrum of the ringing oscillation. In the FFT
figure, the green dotted lines represent the washboard frequency
fwb and nfwb (n ¼ 1; 2; 3…) at the corresponding velocity.
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total dissipated energy, respectively, as shown in Fig. 3. As
the sliding velocity rises, the energy dissipation due to
oscillations increases and becomes comparable to that
occurring during the slip phase. Particularly, when the
tip engages in resonant vibrations, more kinetic energy is
dissipated into heat, which leads to friction force peaks in
Fig. 1(d).
In summary, we propose that the damping force is

proportional to the tip oscillation speed in the AFM setup,
which produces accurate predictions of the friction force
obtained by AFM and MD results over a wide sliding
velocity range. Given that the PT and FK models all have
the same expression for the damping term and they have
been used extensively to account for various friction
phenomena, this new damping term could have immense
implications to our understanding of the dynamics of
energy dissipation at atomic scale. For example, existing
models cannot quantitatively explain velocity weakening
and other intriguing phenomena in experimental findings
and engineering applications. In contrast, based on the
proposed energy dissipation mechanism, we can account
for spring-stiffness-dependent friction force and velocity
weakening because the AFM cantilever spring stiffness
directly determines the resonant frequency of the tip-
substrate system. When resonance occurs, more energy
is dissipated, which leads to enhanced friction force, i.e.,
multiple peaks in velocity-dependent friction. Once the
sliding velocity exceeds the value corresponding to the
condition of fr ¼ fwb, the tip vibration cannot catch up
with the periodic excitation of the substrate potential. In
this case, the spring-mass system with a low resonant
frequency cannot effectively acquire and dissipate energy
from the moving substrate, which leads to a rapidly

decreasing friction force at even higher sliding velocity.
Overall, the proposed phononic friction model provides an
accurate tool to predict friction under different circum-
stances, which makes it possible to actively control friction
in various applications.
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