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We examine theoretically the inertial migration of a neutrally buoyant rigid sphere in pressure-driven
channel flow, accounting for its finite size relative to the channel width (the confinement ratio). For
sufficiently large channel Reynolds numbers (Re,.), a small but finite confinement ratio qualitatively alters
the inertial lift velocity profiles obtained using a point-particle formulation. Finite size effects lead to new
equilibria, in addition to the well-known Segre-Silberberg pinch locations. Consequently, a sphere can
migrate to either the near-wall Segre-Silberberg equilibria, or the new stable equilibria located closer to the
channel centerline, depending on Re, and its initial position. Our findings are in accord with recent
experiments and simulations, and have implications for passive sorting of particles based on size, shape,
and other physical characteristics, in microfluidic applications.
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Inertial migration of neutrally buoyant spheres in pipe
flow, to an annular location between the centerline and
walls, was first observed by Segre and Silberberg [1-3], the
location termed the Segre-Silberberg annulus (henceforth,
SS annulus or equilibria). Equilibria arising from inertial
lift forces have since been exploited in microfluidic
applications [4-8]. The first theoretical explanations of
the phenomenon were for pressure-driven channel flow (the
plane Poiseuille profile) [9,10], and based on the inertial lift
on a sphere for Re,,Re. <1, Re, and Re. being the
particle and channel Reynolds numbers, respectively [11].
The pair of zero crossings of the O(Re,) lift profile,
symmetrically located about the centerline, corresponded to
the SS equilibria. Calculations were later extended to Re,. 2
O(1) [12,13], with the SS equilibria starting at a location
intermediate between the walls and centerline for Re, < 1,
and moving wallward with increasing Re.. An analogous
dependence on Reynolds number was predicted for the SS
annulus in pipe flow [14], pointing to the similar physics
governing migration in the two configurations.

Later experiments [15], while confirming the original
observations [1-3], revealed an additional inner annulus,
this being the only equilibrium location beyond a certain
Re.. The calculations above [9,10,12,13] use a point-
particle approximation, and predict only the pair of SS
equilibria in plane Poiseuille flow, and the SS annulus alone
in pipe flow [14], regardless of Re,.. The inner annulus was
therefore speculated to arise from finite-size effects [15].
Although initially regarded as a transient feature [16],
recent experiments [17] have confirmed the inner annulus
to be a stable equilibrium, leading to the following
migration scenario: all spheres focus onto the SS annulus
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at low Re.. (Regime A); for Re.. above a threshold, spheres
focus onto either the SS annulus or the inner annulus
depending on their initial location (Regime B); spheres
focus solely onto the inner annulus beyond a second
threshold (Regime C). The threshold Re,.’s demarcating
different regimes decrease with increasing confinement
ratio (4), defined as the ratio of the sphere radius a to
channel width H (or pipe radius). This scenario is quali-
tatively confirmed by simulations [18,19], although the
parameter ranges explored in these studies are restricted.

Herein, we move beyond earlier point-particle formula-
tions, and theoretically examine inertial migration in plane
Poiseuille flow for small but finite A, with Re, = V. H/v
being arbitrary; V. here is the centerline speed, and v the
kinematic viscosity of the suspending fluid. Re,, = 2’Re, is
assumed small, allowing analytical progress based on a
leading order Stokesian approximation. For large Re,, the
O(/Re,) finite-size contribution is shown to qualitatively
alter the point-particle (A = 0) inertial lift profiles in a manner
consistent with the recent studies above. Specifically, a new
pair of equilibria, closer to the centerline, emerges beyond a
threshold Re,, even for Re, < 1. We provide a complete
characterization of migration scenarios in the 4 — Re, plane.

For a neutrally buoyant torque-free rigid sphere in
plane Poiseuille flow, at a distance d from the lower wall
(see Fig. 1), use of the reciprocal theorem leads to the
following expression for the inertial lift velocity (scaled
by Viaxd) [20-22]:

Vp——Rep/ u® (- Fu) )G 0= Tu)av.

(1)
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FIG. 1. A neutrally buoyant sphere of radius a in pressure-

driven flow through a channel of width H.

the integration being over the fluid volume V¥. The
inertial acceleration terms in the integrand involve z(!),
the disturbance velocity field due to the aforesaid neu-
trally buoyant sphere at a given Re,, while u® is the
Stokesian test velocity field due to the same sphere
translating under a unit force, normal to the channel
walls, in an otherwise quiescent fluid. u® = (fr, +
Ayrd —2y/3)1; is the ambient Poiseuille flow in a
reference frame translating with the sphere, r, being
the gradient coordinate relative to the sphere center [23];
f =4(1 —2s) and y = —4 denote the ambient shear rate
and curvature.

For Re,, small, on using the asymptotic forms of uV and

u? for a<r< min(H, HRe:.%), r being the distance
from the sphere, the integral in (1) is found to diverge due to
the linearized inertial terms (u') - Vu® u® - Vu),
implying that the dominant contributions to V', arise from

scales of O(H), and of O(HRCZ%) or larger, for Re, <1
and > 1, respectively [20]. Hence, neglecting the finite
sphere size and nonlinear inertial terms (") - Vu(1)), one
obtains the point-particle approximation [20],

V,=Re, / g (WS VU LU VaNS)av, (2)
vEyvP

examined earlier [9,10,12,13]. The integration is now over
the total volume between channel walls, with z(? approxi-
mated by ug,, the velocity field due to a Stokeslet oriented
perpendicular to the walls. u(!) is replaced by ulS, the
solution of the linearized Navier-Stokes equations driven
by a stresslet proportional to the plane Poiseuille rate of
strain tensor, (/2)(1,;1, + 1,1,); 1, being the gradient-
aligned unit vector. U® = (Br, + dyr3)1, is the Poiseuille
flow in a reference frame moving with the fluid at the
sphere center, and omits the smaller ambient-curvature
contribution in u®.

We now add and subtract the point-particle contribution
[given by (2)], in (1), recognizing that the difference
between the exact integral and (2), corresponding to
finite-size contributions, comprises (i) the nonlinear inertial
terms, (ii) the short-ranged component of the linearized

inertial terms neglected in (2), and (iii) the particle volume
(VP) contribution. All of these are dominated by scales of
O(a), and the lift velocity may therefore be written as [20]

V,(s)= —Rep/

vi+y

st (W3- VU® + U - Vul?)dv

+ARe, {—/ u,(-z) . (ui}i) vu'))av

s

—Ugy,;* (ustrj -VU® +U> - vustrVi):| v

* / Usii- (ustr,i -VU® +U> - vustrﬁi)dv] ’ (3)
VP

where the terms within square brackets are the finite-size
contributions. The dominance of scales of O(a) implies
that the integration for the first two finite-size terms is over
the unbounded fluid domain (V*°) outside the sphere. Thus,

,(»2) is the Stokesian disturbance due to a sphere translating

under a gradient-aligned unit force, and ui_li) is that due to a
force-free torque-free sphere in plane Poiseuille flow, both
in an unbounded domain; ug; and ugy.; denote the
unbounded-domain Stokeslet and stresslet fields [23].

The dependence of the point-particle contribution on H
amounts to an Re. dependence (via u)>) in nondimen-
sional terms, and the first integral in (3) is thus of the
form Re, F; (s, Re,), with F; determined semianalytically
for Re, < 1 [9,10,21], and numerically for Re. = O(1)
[12,13,21]. The irrelevance of H for the finite-size
integrals implies that the expression within square brack-
ets, in (3), is only a function of s. The simple domain of
integration (V® or V) leads to it being evaluable in
closed form [20], and (3) reduces to

u

1141(1 = 2s)

Vp(s) =Re, Fi(s,Re.)+ 4 216 ,

(4)

with F;(s,Re,) computed using a shooting method
[12,13,21]. The two terms in (4) are, respectively, the
leading contributions in the outer- and inner-region
expansions within a matched asymptotic expansions
framework [24].

Figure 2(a) shows the point-particle lift profiles, for
different Re,’s, over the lower half-channel (due to anti-
symmetry about the centerline). In addition to wallward
movement of the lone zero crossing (SS equilibrium), the
lift at a fixed location, not close to the wall [25], is seen to
decrease in magnitude sharply with increasing Re,. [13].
This reflects weakened particle-wall interactions when the
walls recede beyond the inertial screening length of

1
O(HRe.?). Apart from the overall decrease in magnitude,
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FIG. 2. [Inertial lift profiles in the lower half-channel for Re. € [50, 2000]: (a) A = O [point-particle profile F(s,Re_.)]; (b) A = 0.01.
c 1 c

The arrow in (a) shows the movement of the SS equilibrium with increasing Re,.. The black, red, and blue symbols in (b) denote the SS,
unstable and stable equilibria, respectively; the insets in (b) provide a magnified view of the saddle-node bifurcations at Reﬂ":‘“h"ld ~ 665

and Relreshold » 1500.

the profile also changes shape, with an intermediate
concave-downward portion emerging for Re. = 300. An
analogous scenario prevails for pipe flow, albeit with the lift
being smaller at the same Re, [14,17].

The changes in the point-particle contribution above
imply that the finite-size contribution in (4), although O(2)
smaller for Re. < 1, becomes comparable for sufficiently
large Re, [26]. This is seen in Fig. 2(b), which shows the
lift profiles, for A = 0.01, for the Re,’s in Fig. 2(a). For
Re. = 50, the lift profile and the SS equilibrium are only
marginally affected. In contrast, for Re, = Ref™ld (~665
for A =0.01), while the SS equilibrium (expectedly) has
moved closer to the walls, a pair of stable and unstable
equilibria appear between it and the centerline via a saddle-
node bifurcation; the unstable equilibrium demarcating the
basins of attraction of the SS and inner stable equilibria.
The bifurcation arises due to finite-size effects causing the
negative curvature region in the point-particle profile to
cross the zero-lift line [upper inset, Fig. 2(b)]. As Re,
increases to 800, the unstable equilibrium moves toward the
SS equilibrium even as both move wallward, while the
inner stable equilibrium moves toward the centerline. A
second bifurcation at Re, = Refsh°! (%1500 for 2 = 0.01)
leads to the latter equilibrium being the only one in the
half-channel for larger Re, [lower inset, Fig. 2(b)]. Note
that for Re.€[50,2000], 2= 0.01, as in Fig. 2(b),
Re, €[0.005,0.2], consistent with the assumption of weak
fluid inertial effects on scales of O(a).

Figure 3(a) plots the equilibrium loci, identified above,
as a function of Re.. The SS branch starts at s.q ~0.19
[the SS equilibrium, s., = 0.182, modified to O(4)] for
Re. <« 1, moving to smaller s with increasing Re.. The
inner stable equilibrium emerges discontinuously at
Seq & 0.18 for Re. = 665, moving to larger s thereafter
(5eq = 0.09 for the SS equilibrium at this Re.). The loci of

the SS and inner equilibria appear as sequences of black
and blue dots, respectively, with the unstable equilibrium
locus connecting the two shown as a sequence of red dots.
The fold that develops in the interval Re, € (665, 1500),
bracketed by the two saddle-node bifurcations, implies a
hysteresis [28]. A quasistatic experimental protocol of
increasing flow rate will lead to spheres remaining at the
SS equilibrium until Re, ~ 1500, at which point they will
jump onto the stable branch closer to the centerline. In
contrast, for a decreasing flow rate, spheres will remain at
the inner stable equilibrium down to Re, = 665, before
jumping back to the SS branch.

A behavior analogous to that in Fig. 3(a) occurs for
smaller 4, with the two Re, thresholds increasing with
decreasing A. However, the equilibrium loci undergo a
qualitative change as 4 increases. To see this, note that
the SS equilibrium, in the point-particle framework, emerges
from a balance between an O(fy) curvature-induced con-
tribution driving migration away from the centerline, and an
O(?) wall-induced repulsion. Both contributions arise due
to inertial forces on scales of O(H) for Re, < 1 [9,21], and
decrease with increasing Re,.. The O(f?) contribution
decreases faster, leading to wallward movement of the SS
equilibrium. Finite-size effects lead to an additional O(Afy)
curvature-induced contribution, on scales of O(a), that
drives migration toward the centerline [20]. The opposing
signs of the point-particle and finite-size curvature-induced
contributions weaken the wallward movement of the SS
equilibrium for larger A. The result is seen in the equilibrium
locus for A = 0.025 in Fig. 3(b). The region of multiple
equilibria is now absent—the SS equilibrium smoothly
transitions from an initial wallward to a subsequent center-
ward movement across Re,. = 200.

By identifying equilibrium loci as a function of Re,, for
different A, a “phase diagram” of migration scenarios in the
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unstable equilibria, respectively. The interval of multiple equilibria, Re, € (665, 1500) in (a), leads to hysteretic jumps in the equilibrium
location marked by green arrows (A s¢q = 0.179 — 0.09 and A, 5. = 0.08 — 0.31). Vertical dashed lines in (a) and (b) denote the

laminar-turbulent transition.

A —Re, plane is constructed in Fig. 4, highlighting three
distinct regions. Region @, below the red curve but outside
the (gray) shaded region, contains lift profiles with a single
stable off-center equilibrium in the half-channel. Region ®
(the shaded region) contains profiles with two stable
equilibria separated by an intervening unstable one. The
upper and lower boundaries of this region are determined
by the pair of turning points (saddle-node bifurcations) on
the equilibrium locus—these were identified in Fig. 3(a) for
A = 0.01. The boundaries end in a cusp (A1itical, Regritical) =
(0.0216,296)—bottom left inset, Fig. 4 [33,34]. Along
either a vertical or a horizontal line, the latter corresponding
to an experimental path of changing flow rate, Region ®
mediates a discontinuous transition from the SS equilib-
rium to the inner stable equilibrium. Region ®, above the
red curve, includes lift profiles with the centerline as the
only stable equilibrium. The centerline is always an
equilibrium by symmetry, albeit an unstable one in
Regions © and @. Insets (a)—(d) in Fig. 4 depict lift profiles
consistent with the aforementioned description.

The black dot-dashed line in Fig. 4, corresponding to
Re, = 1, may be regarded as a rough threshold above
which the present results may no longer be valid. The
region of multiple equilibria and associated hysteretic
transitions lie well within this threshold. A second factor
limiting the observability of Region @ is the laminar-
turbulence transition. Plane Poiseuille flow transitions
subcritically to turbulence at Re.~ O(2000) [35], this
being marked by dashed vertical lines in both Figs. 3(a)
and 3(b), and Fig. 4. The region of multiple equilibria in
Fig. 4 appears well before the transition.

While the migration pattern for fixed A, implied by
Fig. 4, is in qualitative agreement with studies quoted at the
beginning [15-19], the inner annulus in these studies is
observed for higher 4(20.05) and for Re, 2 O(1)—see

hatched region in Fig. 4. The absence of multiple equilibria
for smaller / is likely due to the O(1~?) development length
[15], needed for a steady particle distribution, being larger
than the pipe length used. Notwithstanding differences
between the pipe and channel geometries, experiments with
longer pipes should lead to the hatched region in Fig. 4
extending down to smaller A. There remains the provocative
question of how the secondary finite-Re,, region of multiple
equilibria (the hatched region mentioned above), connects
to the theoretical small-Re, one (Region ©@).

Apart from the fundamental significance of our findings,
in terms of enriching the inertial migration landscape, and
providing an explanation for recent experiments and
computations, Fig. 4 may be leveraged toward sorting in
microfluidic applications. The simplest scenario pertains to
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FIG. 4. Migration scenarios in the 4 —Re, plane. Top four
insets show inertial lift profiles for the following (4,Re,):
(@) (0.3,5), (b) (0.05,10), (c) (0.01,1000), (d) (0.015,1500);
bottom left inset shows the neighborhood of the cusp. The
hatched region corresponds to parameter ranges covered in earlier
studies [15-19].
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spheres of two different sizes, corresponding to confine-
ment ratios 4; and 4, (> 1;). An experimental protocol of
changing flow rate (Re.), for a bidisperse suspension of
these particles, would appear as a pair of horizontal lines in
Fig. 4, the upper one corresponding to 4,. With increasing
flow rate, separation would be achieved at an Re, when the
point on the 4, line is above Region ® (after crossing it to
the right), with the one on the 4; line directly below. At this
Re,, larger spheres focus onto the near-centerline stable
equilibria, with smaller ones focusing onto the near-wall SS
equilibria. If the point on the 4, line lies within, rather than
below, Region @ (as is the case when 1,/4; is not far from
unity), partial separation will be achieved with smaller
spheres focusing onto both the SS and inner equilibria.

The implications of the near-centerline stable equilibria
go well beyond the size-sorting scenario above. The
dependence of these equilibria on inertial forces, on scales
of order the sphere radius, implies a generic sensitivity to
detailed characteristics of the suspended microstructure.
These include shape parameters for anisotropic rigid
particles [36], the viscosity ratio, and capillary number
for drops [37-39], and nondimensional parameters based
on the membrane viscosity and interfacial elastic moduli for
elastic microstructures such as vesicles, capsules, or red
blood cells. The analog of Region @ for deformed drops,
for instance, will allow for separation based on both drop
size and viscosity ratio. It is of interest, in future, to
quantitatively determine the relevant migration phase dia-
grams, which would enable rational design of passive
sorting protocols.
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