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Quasinormal modes (QNMs) are essential for understanding the stability and resonances of open
systems, with increasing prominence in black hole physics. We present here the first study of QNMs of
optical potentials. We show that solitons can support QNMs, deriving a soliton perturbation equation and
giving exact analytical expressions for the QNMs of fiber solitons. We discuss the boundary conditions in
this intrinsically dispersive system and identify novel signatures of dispersion. From here, we discover a
new analogy with black holes and describe a regime in which the soliton is a robust black hole simulator for
light-ring phenomena. Our results invite a range of applications, from the description of optical pulse
propagation with QNMs to the use of state-of-the-art technology from fiber optics to address questions in
black hole physics, such as QNM spectral instabilities and the role of nonlinearities in ringdown.
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Introduction.—Quasinormal modes (QNMs) are an area
of high activity and interest following the discovery of
gravitational radiation from black hole mergers [1]. After a
merger, the resulting black hole rings down to its final state
in a characteristic fashion, described by a dampedwaveform
with complex frequency. This phenomenon of ringdown is a
generic feature of open systems, allowing us to identify
natural resonances and address questions of stability [2–4].
Examples of ringdown abound, in optical cavities [5–7],
plasmonic nanoresonators [8,9], polariton superfluids [10],
hydrodynamics [11,12], supergravity [13], and even the
ringing of church bells. This diversity of settings is crucial as
it provides many perspectives on the ringdown pheno-
menon, whose significance in the context of black holes
is increasingly recognized [14–16].
The ringdown of a perturbed open system is readily

understood using its QNMs. These are eigenmodes of
the evolution operator, with a discrete complex spectrum,
Ωn ¼ ωn − iΓn, where the overtone index n orders the
modes by increasing decay rate Γn. The signal of ringdown
is a superposition of damped QNM oscillations, with the
ringdown spectrum a feature of the system, independent of
the initial perturbation [17]. The fundamental mode (n ¼ 0)
is longest-lived, eventually dominating the linear response
and providing immediate access to characteristic informa-
tion [18]. QNMs describe both perturbative field evolution

around fixed bulk media with well-defined boundaries, and
also open systems with time-independent repulsive poten-
tials. In optics, they efficiently reconstruct the mode shapes
of electromagnetic fields in optical resonators and plas-
monic cavities, both of the former kind [5]. By contrast,
black hole oscillations are of the latter type [11,18]. To date,
QNMs of optical potentials have not been reported. Fiber
optical solitons provide a remarkable way of creating such
potentials. Indeed, suitable perturbations to the soliton are
known to obey a Schrödinger equation with a repulsive
potential in the comoving frame [19–22].
In this Letter, we begin by deriving a perturbation

equation where the soliton acts as a potential, due to a
nonlinear polarization of the medium, with weak third-
order dispersion at the soliton. We clarify the notion of
QNMs in this intrinsically dispersive system, finding
signatures of dispersion, and showing the soliton can
support a discrete set. Analytic expressions for the QNMs
and their complex frequencies—the QNM spectrum—are
provided. We then consider a weak dispersive pulse
copropagating with and perturbing the soliton. Simulating
the response, we observe the predicted ringdown. We
identify the complex frequency of the fundamental mode,
finding agreement with our theory. Finally, we establish a
mathematical analogy between the ringdown of solitons
and black holes, and discuss prospects for developing our
analysis in this and other soliton-supporting systems.
Soliton perturbations.—To investigate dispersive pulse

interactions with a soliton, we first describe the soliton in
single-mode fibers. The soliton is given by a complex
envelope A ¼ Asðz; tÞ around a carrier of frequency ωs,
obeying the nonlinear Schrödinger equation (NLS) for
pulse propagation [23]. The soliton has a stationary

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 132, 053802 (2024)

0031-9007=24=132(5)=053802(6) 053802-1 Published by the American Physical Society

https://orcid.org/0009-0005-9286-3333
https://orcid.org/0000-0001-7720-1669
https://orcid.org/0000-0003-0424-3440
https://orcid.org/0000-0002-2250-2058
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.053802&domain=pdf&date_stamp=2024-01-31
https://doi.org/10.1103/PhysRevLett.132.053802
https://doi.org/10.1103/PhysRevLett.132.053802
https://doi.org/10.1103/PhysRevLett.132.053802
https://doi.org/10.1103/PhysRevLett.132.053802
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


sech2ðτÞ intensity profile in the comoving frame, which is
related to the laboratory frame by

τ ¼ t − z=v
T0

; ζ ¼ zjβs2j
T2
0

; ð1Þ

with T0 the temporal width of the soliton, v its group
velocity, and βs2 its group velocity dispersion.
In the absence of higher-order dispersion, perturbed

solitons are known to relax by routes other than ringdown
[24,25]. Therefore, we consider the NLS with additional
terms for higher-order dispersion [26]. In the laboratory
frame, this reads

∂A
∂z

− i½βði∂t þ ωsÞ − βðωsÞ�A − iγjAj2A ¼ 0; ð2Þ

where βðωÞ is a Taylor series for the propagation constant
describing dispersion in the fiber and γ is the fiber nonlinear
parameter. We extend the analysis in [21,22], which limited
dispersion to second order around the soliton frequency, by
including weak third-order dispersion. This preserves
stable soliton propagation, with only the soliton velocity
v and phase affected. The perturbed soliton solution is
given in [27,28].
We consider a dispersive pulse a as a linear perturbation

copropagating with the soliton, As. The dispersive pulse
envelope is defined with a carrier frequency, ωa, so the
overall envelope is

A ¼ As þ aeiðβðωaÞ−βðωsÞÞz−iðωa−ωsÞt: ð3Þ

Inserting into Eq. (2) yields the linearized equation of
motion for the dispersive pulse. We neglect fast-oscillating
terms arising from frequency mixing between the soliton
and dispersive pulse, given their spectral separation and no
phase matching. In the comoving frame, the dispersive
pulse envelope satisfies

jβs2j
T2
0

∂a
∂ζ

−
�
βs1
T0

−
βs3
6T3

0

−
βa1
T0

�
∂a
∂τ

− i
X∞
k¼2

βak
k!

�
i∂τ
T0

�
k
a − 2iγjAsj2a ¼ 0; ð4Þ

with βsk and βak the expansion coefficients of βðωÞ aboutωs
and ωa, respectively. Requiring the dispersive pulse carrier
to be group-velocity matched (GVM) to the soliton, so that
βa1 ¼ βs1 − βs3=6T2

0 ¼ v−1, the equation simplifies. For
narrow band perturbations, we again truncate our Taylor
series for dispersion, but now to second order aroundωa.We
thus focus on near-GVMperturbations. This is natural in the
context of QNMs, which are associated with perturbations
that remain coincident with a background potential until late
times. These perturbations satisfy

i
∂a
∂ζ

−
βa2
2jβs2j

∂
2a
∂τ2

þ 2sech2ðτÞa ¼ 0; ð5Þ

having inserted the soliton [27,28]. Equation (5) is our
soliton perturbation equation, which may be cast as a time-
reversed Schrödinger equation with an inverted Pöschl-
Teller potential [29]. This agrees with previous work in
which the soliton acted as a repulsive potential, creating
classical turning points for slow dispersive light [21,30], and
exhibiting light tunneling [20].
Soliton quasinormal modes.—As ringdown arises in the

linear response of a system, soliton ringdown can be
explored using our soliton perturbation equation. To derive
the soliton QNMs, we begin with mode solutions,
aðζ; τÞ ¼ uðτÞ expð−iΩζÞ. We obtain

−
d2u
dτ2

þ 2jβs2j
βa2

�
Ωþ 2sech2ðτÞ

�
u ¼ 0; ð6Þ

solvable through exact methods [31].
Next, we must impose boundary conditions on the

general solution to Eq. (6). In gravitational physics, one
requires outgoing waves at the boundaries, as phase and
group velocities are equivalent in relativistic systems,
guaranteeing energy-dissipating modes. However, the sit-
uation is not so simple in the presence of dispersion.
Moreover, laboratory frame energy is not conserved by
Eq. (5), as time translation is not a symmetry. The relevant
symmetry is translation in ζ, generating the conserved
current,

j ¼ −
βa2
2jβs2j

�
∂a
∂ζ

∂a�

∂τ
þ ∂a�

∂ζ

∂a
∂τ

�
: ð7Þ

It is then natural that we require j to be asymptotically
outgoing, i.e., sgnðjÞ ¼ sgnðτÞ as τ → �∞. In the absence
of dispersion, these boundary conditions coincide with
those of relativistic systems. Far from the soliton potential,
aðζ; τÞ ∼ expðiK�τ − iΩζÞ, with asymptotic wave num-
bers K� given by the fiber’s underlying dispersion relation,
Ω ¼ −ðβa2=2jβs2jÞK2

�, due to Eq. (5). For decaying modes,
i.e., ImðΩÞ < 0, the boundary conditions thus set the signs
of ImðKþÞ and ImðK−Þ so that solutions grow exponen-
tially towards the boundaries.
For complexΩ, the asymptotic form of the general mode

solution contains waves that both grow and decay with
separation from the soliton. QNM boundary conditions
forbid the latter, as they deliver energy into the system.
These unwanted waves vanish only for a discrete set of
QNM frequencies Ωn where the Wronskian of two linearly
independent solutions is zero, and decaying waves vanish
against growing waves. In the language of scattering
theory, this occurs due to the divergence of transmission
and reflection amplitudes at these frequencies. These
frequencies also appear as poles in the Green’s functions
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associated with Eq. (5). Therefore, our physically moti-
vated condition that j be outgoing at infinity agrees with the
standard definition of QNMs, reinforcing our approach to
the boundary conditions [32–34].
The QNM frequencies are given by

Ωn ¼
βa2
2jβs2j

��
nþ 1

2

�
2

−
�
4jβs2j
βa2

−
1

4

��

− i
βa2
jβs2j

�
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jβs2j
βa2

−
1

4

s
; ð8Þ

where the overtone index n is a non-negative integer. The
soliton QNM spectrum, plotted in Fig. 1, depends only on
the group velocity dispersions, not on βs3. This is tunable
by varying the soliton central frequency, which determines
the dispersion at the soliton and GVM frequencies. From
Eq. (8), we see the soliton supports QNMs only under

normal dispersion, βa2 > 0, confirming that the perturba-
tion must be spectrally distinct from the anomalous
dispersion regime of the soliton, βs2 < 0.
The full QNM solution is easily obtained with the

general solution and QNM frequencies. The result is

anðζ; τÞ ¼ α coshnþ1
2ðτÞeImðΩnÞζeiϕnðζ;τÞfnðτÞ; ð9Þ

where α is the amplitude and we define

ϕnðζ; τÞ≡ −ImðλÞ log coshðτÞ − ReðΩnÞζ;
fnðτÞ≡ 2F1½−n; 1þ 2λ − n; 1þ λ − n; ðe2τ þ 1Þ−1�;

λ≡ −
1

2
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jβs2j
βa2

−
1

4

s
:

The hyperbolic factor in Eq. (9) shapes the mode with
exponential growth far from the soliton, while the expo-
nential in ζ gives an overall decay. The phase ϕn produces
phase velocities that are outgoing for the lowest overtones,
but otherwise are ingoing: a result due to dispersion. The
ordinary hypergeometric function fn arranges that mode
parity alternates with overtone index. For the fundamental
QNM, f0 ¼ 1. The first five QNMs are plotted in Fig. 2.
The exponential growth of these solutions appears unphys-
ical, but this is a typical feature of QNMs, which are
necessarily decaying in advanced time. Physically, a field
ringing down resembles a superposition of QNMs on only a
finite region of the space [17].
Simulations.—To demonstrate the emission of ringdown

waves from the soliton, we numerically simulate the
evolution of a near-GVM pulse colliding with the soliton.
For various initial pulses, the collision produces ringdown
waves in the perturbative pulse field. These waves visit
each position in the comoving frame, in both transmission
and reflection. At each position, the signature of ringdown

FIG. 1. Quasinormal mode spectra for optical solitons with
Q ¼ 4jβs2j=βa2 − 1=4 in the range ½0;∞Þ, plotted in the lower-
half complex plane. Each QNM frequency (red diamond) lies at
the intersection of a parabola (gray, dashed) corresponding to Q,
and a semi-ellipse (red, solid) corresponding to the overtone
index n. The fundamental mode frequencies lie on a semicircle of
radius 2 about the origin.

FIG. 2. Complex plots of soliton quasinormal modes, anðζ; τÞ in units of α. The fundamental mode (a) and four overtones (b)–(e) are
shown for ζ∈ ½0; 2�, τ∈ ½−6; 6� with jβs2j=βa2 ¼ 2. They grow symmetrically about the soliton potential at τ ¼ 0, and their phase
velocities reverse direction for sufficiently high overtones, visible from the contours of constant phase. This signature of dispersion
represents a qualitative departure from the quasinormal modes of nondispersive systems.
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is a decaying oscillation, with a period and decay rate given
by the fundamental QNM. We simulate this process using a
split-step Fourier method to solve the soliton perturbation
equation, Eq. (5).
The ringdown of an optical soliton occurs against an

evolving background of non-QNM contributions to the
perturbative field. These arise due to dispersion, which
tends to broaden the transmitted and reflected pulses
produced by the pulse-soliton collision. This effect is
absent in the paradigmatic QNM systems [5,8–11,13].
The ringdown signal is strongest around an observation
point τ ¼ τ0 near the transmitted pulse, and clearest when
this pulse has least width. Therefore, we configure our
initial pulse with a quadratic phase, known as a chirp, so the
transmitted pulse is narrowest at a point τ ¼ τc near the
observation point. Our initial condition is

að0; τÞ ¼ α exp

�
−
ðτ − τpÞ2p

σ2p

�
exp

�
i
ðτ − τcÞ2

4ζc

�
; ð10Þ

with a super-Gaussian pulse envelope about τ ¼ τp and a
minimum pulse width at a fiber length of ζ ¼ ζc.
The above initial condition produces a clear ringdown

signal for a range of parameters. Importantly, the dominant
ringdown period and decay rate consistently agree with the
fundamental mode. Figure 3 presents a quintessential
example of optical soliton ringdown. Three phases are
identifiable: (i) an initial transient phase as the transmitted
pulse passes the observation point, (ii) a relaxation phase
dominated by ringdown waves, and (iii) a transition
towards a late-time power law decay owing to dispersion.
These three phases are analogous to those appearing in the

relaxation of black holes or hydrodynamic vortex flows
[3,11,18]. For nondispersive systems, the presence of a
late-time tail depends only on details of the potential. In
contrast, we attribute ours to the action of dispersion, as the
inverted Pöschl-Teller potential does not otherwise exhibit
a late-time power law decay [35].
Black hole analogy.—In optics, ringdown is predomi-

nately associated with leaky cavities and resonators. Yet the
ringdown of an optical soliton, viewed as a repulsive
potential, bears greater resemblance to that of black holes.
Indeed, the link to black holes is beyond merely qualitative.
Equation (6) is an exact mathematical analogue to the QNM
equation for scalar, electromagnetic, and gravitational per-
turbations on the Nariai and near-extremal Schwarzschild–
de Sitter black holes [3],

−
d2R
dr2�

þ �
−ω2 þ V0 sech2ðσr�Þ

�
R ¼ 0; ð11Þ

with R the radial wave function and r� the so-called tortoise
coordinate. Importantly, Eq. (11) is routinely used to
produce analytic approximations for the QNM frequencies
of a wide range of black holes, modeling the effective
gravitational potential with the Pöschl-Teller potential.
Indeed, this approach is common in the astrophysical
context, applying to both Schwarzschild and Kerr black
holes [18].
In the analogy, the soliton reproduces the entire effective

radial gravitational potential outside of the black hole, with
the center of the soliton corresponding to the photon
sphere. The center of the soliton is a point of instability
that gradually leaks near-GVM perturbations, just as the
photon sphere leaks light. The mode shapes are identical to
those of the soliton, with frequencies related by ω ∝

ffiffiffiffiffiffiffi
−Ω

p
.

Consequently, whereas the black hole QNM frequencies lie
along vertical lines in the complex plane, those of the
soliton form parabolic curves, shown in Fig. 1. We can
define a regime of weak dispersion in which the group
velocity dispersion at the GVM frequency is much less than
the finite dispersion supporting the soliton, i.e.,
βa2 ≪ jβs2j. The low-lying QNM spectrum is then given by

Ωn ¼ −2 − i

ffiffiffiffiffiffiffiffiffi
4βa2
jβs2j

s �
nþ 1

2

�
; ð12Þ

where n is small compared with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijβs2j=βa2

p
and we omit

terms of orderOðβa2=jβs2jÞ. After rescaling, this is formally
identical to the QNM spectrum of the Nariai and near-
extremal Schwarzschild–de Sitter black holes, in the regime
of high angular momentum perturbations, i.e., the eikonal
regime [3,18]. Thus, the soliton ringdown is identical to
that of these black holes, and the soliton becomes a black
hole simulator.

FIG. 3. Evolution of the perturbative field aðζ; τÞ at a fixed
point τ0 ¼ −5 away from the soliton, in units of α. The blue
curve is the simulated solution to Eq. (5) with the initial condition
in Eq. (10), τc ¼ −10, τp ¼ 20, ζc ¼ 2.5, p ¼ 5, σ ¼ 15, and
jβs2j=βa2 ¼ 2.5. Three phases are separated by vertical dashed
lines, corresponding to (i) the initial transient of the perturbation,
(ii) the emission of ringdown waves, and (iii) a transition to a late-
time tail. The red dashed curve shows a fit with the fundamental
QNM (n ¼ 0) in Eq. (8).
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Outlook.—We have shown for the first time that optical
potentials can support quasinormal modes and demon-
strated how ringdown may be excited in the case of fiber
solitons. We have demonstrated a selection of correspond-
ences, contributing to a growing zoo of table-top systems in
analogue gravity [36]. In particular, this Letter sounds a
bell, heralding future works that will introduce sophisti-
cated techniques of QNM analysis from black hole physics
into optics. Conversely, fiber solitons are now a platform
with which the tools of optics may be put to use in the study
of otherwise inaccessible phenomena that arise in the study
of black holes, such as the recently reported QNM spectral
instability [37–40] and imprints of nonlinearity on the
ringdown process [41,42].
The above analysis employed several approximations

that may be fruitful to relax, to probe the consequences for
soliton QNMs. In this Letter, the soliton QNM spectrum
was shown to be robust against weak third-order dispersion
at the central frequency of the soliton. Future work can
investigate the influence of further weak fiber optical
effects, e.g., Raman scattering and higher-order dispersion
at the perturbation frequency.
We generalized the QNM boundary conditions to an

outgoing energy current, accommodating dispersion in
our system. We discovered QNMs with ingoing phase
velocities and dispersion-induced late-time tails, revealing
the soliton as a platform for investigating dispersive QNM
physics. A further effect of dispersion is that the soliton
QNM spectrum is tunable by varying the central fre-
quency of the soliton. In fibers supporting several group
velocity matched points, there exists a further discrete
freedom to choose the GVM frequency around which we
consider perturbations. The same soliton may thus possess
several distinct QNM spectra. Beyond this, we can relax
our near-GVM condition and consider QNMs of more
general linear differential operators in Eq. (4). This can be
expected to produce a continuum of QNM spectra, fully
characterizing the ringdown processes available to the
soliton.
The above QNM analysis focused on optical solitons, but

our findings can describe natural resonances in any realistic
system supporting NLS-type solitons, providing immediate
extensions beyond optics. Furthermore, this Letter lays the
foundation for determining QNMs of other solitons (e.g.,
KdV, sine-Gordon), wherever they act as stationary effec-
tive potentials in their comoving frame.
Finally, we note that optical soliton ringdown has yet to

be experimentally observed and tested against the frame-
work of QNMs. This is most promising with ultrashort
pulses, because the relevant length scales grow quadrati-
cally with pulse length, and would otherwise extend
beyond the fiber loss length. We anticipate that the
identification of ringdown waves in propagating optical
pulses will stimulate developments in communications and

ultrafast lasers, and motivate advances in the field of
dispersion engineering.

The supporting data for this Letter are openly available
from [43].
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[39] M. H.-Y. Cheung, K. Destounis, R. P. Macedo, E. Berti, and
V. Cardoso, Phys. Rev. Lett. 128, 111103 (2022).

[40] T. Torres, Phys. Rev. Lett. 131, 111401 (2023).
[41] K. Mitman, M. Lagos, L. C. Stein, S. Ma, L. Hui, Y. Chen,

N. Deppe, F. Hebert, L. E. Kidder, J. Moxon, M. A. Scheel,
S. A. Teukolsky, W. Throwe, and N. L. Vu, Phys. Rev. Lett.
130, 081402 (2023).

[42] M. H.-Y. Cheung, V. Baibhav, E. Berti, V. Cardoso, G.
Carullo, R. Cotesta, W. Del Pozzo, F. Duque, T. Helfer, E.
Shukla, and K.W. K. Wong, Phys. Rev. Lett. 130, 081401
(2023).

[43] C. D. Burgess, S. Patrick, T. Torres, R. Gregory, and F. E. W.
König, Quasinormal modes of optical solitons (dataset),
Dataset, University of St Andrews Research Portal (2023),
10.17630/6a19f6bb-1398-409a-a67d-354a12f18eea.

PHYSICAL REVIEW LETTERS 132, 053802 (2024)

053802-6

https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1038/nphoton.2007.202
https://doi.org/10.1038/nphoton.2007.202
https://doi.org/10.1126/science.1153625
https://doi.org/10.1364/OE.20.005538
https://doi.org/10.1103/PhysRevA.92.023837
https://doi.org/10.1103/PhysRevA.51.2602
https://doi.org/10.1103/PhysRevA.51.2602
https://doi.org/10.1103/PhysRevE.72.016619
https://doi.org/10.1103/PhysRevE.72.016619
https://doi.org/10.1109/PROC.1981.12129
https://doi.org/10.1364/JOSAA.9.000237
https://doi.org/10.1364/JOSAA.9.000237
https://doi.org/10.1007/BF01331132
https://doi.org/10.1364/JOSAB.32.000395
https://doi.org/10.1103/PhysRevD.45.2617
https://doi.org/10.1103/PhysRevD.45.2617
https://doi.org/10.1103/PhysRevD.34.384
https://doi.org/10.1103/PhysRevD.55.468
https://doi.org/10.1103/PhysRevD.79.124043
https://doi.org/10.1103/PhysRevD.79.124043
https://doi.org/10.1098/rsta.2019.0239
https://doi.org/10.1098/rsta.2019.0239
https://doi.org/10.1103/PhysRevX.11.031003
https://doi.org/10.1103/PhysRevX.11.031003
https://doi.org/10.1103/PhysRevLett.128.111103
https://doi.org/10.1103/PhysRevLett.131.111401
https://doi.org/10.1103/PhysRevLett.130.081402
https://doi.org/10.1103/PhysRevLett.130.081402
https://doi.org/10.1103/PhysRevLett.130.081401
https://doi.org/10.1103/PhysRevLett.130.081401
https://doi.org/10.17630/6a19f6bb-1398-409a-a67d-354a12f18eea

