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Bloch oscillations refer to the periodic oscillation of a wave packet in a lattice under a constant force.
Typically, the oscillation has a fundamental period that corresponds to the wave packet traversing the first
Brillouin zone once. Here, we demonstrate, both theoretically and experimentally, the optical Bloch
oscillations where the wave packet must traverse the first Brillouin zone twice to complete a full cycle,
resulting in a period of oscillation that is 2 times longer than that of usual Bloch oscillations. The unusual
Bloch oscillations arise due to the band crossing of valley-Hall topological edge states at the Brillouin
boundary for zigzag domain walls between two staggered honeycomb lattices with inverted on-site energy
detuning, which are protected by the glide-reflection symmetry of the underlying structures. Our work
sheds light on the direct detection of band crossings resulting from intrinsic symmetries that extend beyond
the fundamental translational symmetry in topological systems.
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Bloch oscillations (BOs) are periodic oscillations exhib-
ited by a wave packet in a periodic lattice under a constant
force. The oscillations have a period that takes the wave
packet to transverse the first Brillouin zone once. As such,
BOs offer a valuable tool for revealing crucial information
about the band structure and transport properties of periodic
systems. Initially predicted for electrons in crystalline lattices
[1,2] and shortly after the observation of Wannier-Stark
ladders [3,4], BOs were observed first in semiconductor
superlattices [5,6]. Since then, they have been observed in
various systems, including ultracold atoms [7], Bose-
Einstein condensates [8,9], waveguide arrays [10–14], opti-
cally induced lattices [15,16], plasmonic waveguides [17],
and systems with parity-time symmetry [18]. BOs have also
been observed in strongly correlated quantum systems, but
with a doubled frequency [19–21].
BOs occur in topological materials, too [22]. These

materials have a nontrivial topological structure in their
Bloch bands, defined by certain invariants, and their
accurate measurement is crucial to characterize the topo-
logical materials. In this regard, BOs have proven to be a
powerful tool for measuring these invariants, such as Chern
numbers, Zak or Berry phases [23–26]. Interestingly, in
truncated topological structures [27–29] or for spin-orbit
coupled atoms loaded in a one-dimensional (1D) Zeeman
lattice [30], it is predicted that completing one BO cycle
requires scanning the Brillouin zone twice, resulting in a
period doubling that of usual BOs [27–29]. However,
realizing these predictions is challenging due to the need
for strong time-reversal symmetry breaking, and the prac-
tical difficulties in implementing them in 1D system [30]
or transforming edge states with delocalized bulk modes.

Additionally, by bypassing constraints in real space,
indirectly achieving period-doubling BOs for Bose-
Einstein condensates on a synthetic topological Hall
cylinder has been mentioned [31]. However, this was done
in a virtual, synthetic space, and hence a direct observation
of period-doubling BOs has not been achieved yet.
Here, we investigate both theoretically and experimen-

tally, the optical BOs with a doubling period without
breaking time-reversal symmetry. The BOs occur on
valley-Hall edge states (VHESs) at a domain wall between
two inverted staggered photonic honeycomb lattices. The
system preserves the time-reversal symmetry, enabling
wave packets to move in either direction within the same
domain wall. We consider two types of domain walls:
zigzag and bearded. While both types support a pair of
localized states due to the valley-Hall effect, the zigzag
domain wall has energy band crossings for VHESs,
resulting in the need to scan the Brillouin zone twice for
the BOs of zigzag VHESs. This is in contrast to the bearded
domain wall or other usual BOs, where one cycle is
achieved by traversing the Brillouin zone once. Unlike
previous proposals on period doubling of BOs [27–30], our
Letter considers BOs in a 2D system, where the back-
and-forth oscillation occurs within the same domain wall
without involving bulk mode transformations. This facil-
itates the experimental measurement of the wave packet
drift in real space. By tracking the “center of mass” (COM)
of the VHESs, we directly observed, to the best of our
knowledge, the first period-doubling BOs in photonic
systems or any other physical systems.
We analyze the light propagation along the z axis in a

photorefractive medium, specifically strontium barium
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niobate (SBN: 61) that is described by the following
dimensionless equation for the light amplitude Ψ:
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where the applied dimensionless d.c. field is set toE0 ¼ −30,
corresponding to an electric field E of 2.4 × 105 Vm−1.
ILðx; yÞ represents a 2D lattice wave field that consists of a
domain wall and two staggered honeycomb lattices with
inverted on-site potentials surrounding it. Two types of
domain walls are considered: zigzag [Fig. 1(a)] and bearded
[Fig. 1(c)] (seeRef. [32] on how these lattices are constructed
in modeling and in experiment). To induce BOs, a potential
gradient is created along the domainwalls by illuminating the
sample laterally with a gradient white light, represented by
IG ¼ I0½1þ tanhðy=ηÞ�, where I0 is the intensity of thewhite
light, and η characterizes the width of its intensity gradient
that controls the rate β of a linear increase in the refractive
index in the y axis [32].Note that the form inwhich the lattice
intensity ILðx; yÞ and gradient light intensity IGðyÞ enter
Eq. (1) is determined by the mechanism of the photo-
refractive response [33,34].
To investigate the impact of the Floquet-Bloch spectrum

on the dynamics of BOs, we first set the gradient IG to
zero and search for Bloch eigenmodes in the form of

Ψðx; y; zÞ ¼ ψðx; yÞeiEz ¼ uðx; yÞeikyyþiEz, where EðkyÞ
represents the energy bands, ky ∈ ½−K=2; K=2� is the
Bloch momentum along the y axis, K ¼ 2π=ay is the
width of Brillouin zone, ay is the lattice’s y periodicity, and
uðx; yÞ ¼ uðx; yþ ayÞ is the periodic part of the Bloch
function ψ .
The spectrumEðkyÞ is displayed in Figs. 1(b) and 1(d). As

expected, due to the breaking of the spatial inversion
symmetry in the staggered honeycomb lattices, a gap opens
and a pair of VHESs emerge (indicated by the red curves)
[35]. However, theVHESs exhibit essentially distinct spectra
rooted in the lattice symmetries. The lattice with the bearded
domain wall has mirror symmetryMxðx → −xÞ along the x
axis [Fig. 1(c)]. Applying Mx twice returns a field compo-
nent to its original profile, namely, M2

xψðx; yÞ ¼
ψðx; yÞ. Correspondingly, Mxψðx; yÞ ¼ �ψðx; yÞ, result-
ing in the gappedVHESs, as shown in Fig. 1(d). On the other
hand, the lattice with the zigzag domain wall lacks a
straightforward mirror symmetry Mx but has a glide-
reflection symmetry denoted asG ¼ MxTyðay=2Þ, namely,
the lattice is invariant under Mx followed by a translation
along the y direction by half a lattice constant. When G is
applied twice, it results in a full-lattice-constant translation,
i.e., G2ψðx; yÞ ¼ ψðx; yþ ayÞ. By Bloch’s theorem,
Gψðx; yÞ ¼ eikyay=2ψðx; yÞ. Considering ky ¼ �K=2, such
thatG2 ¼ −1, one finds that the eigenvalues ofG are�i [36],
and consequently, bandsmust cross by pairs at k ¼ �K=2, as
confirmed in Fig. 1(b). This band crossing is protected by the
glide-reflection symmetry and is insensitive to a limited
continuous deformation of the lattice that preserves the
symmetry [37,38]. Note that band crossings can also be
achieved in tilted lattices by delicately balancing the coupling
between sites and external forces [39–41]. However, sym-
metry-protected band crossing facilitates experimental obser-
vations of the associated band dynamics, with BOs being a
salient example, as will be shown below.
With a potential gradient IG present in Eq. (1), the VHES

is subject to a constant force along y. If the force is small,
the evolution of the state is adiabatic, so that it remains in
the same energy band and does not transition between
bands. The Bloch momentum of the VHES increases
linearly with kyðzÞ ¼ k0y þ βz, k0y being the initial momen-
tum. For VHESs in a bearded domain with initially zero
momentum, they follow either the path A → B → C → A
or D → E → F → D [Fig. 1(d)], scanning the whole
Brillouin zone once and returning to the initial state.
Therefore, the BOs’ period in momentum space for the
bearded state is K, corresponding to a distance Z ¼ K=β in
real space. This is the typical BO scenario.
The situation changes significantly when it comes to the

zigzag VHESs due to band crossing that directly results in
the period doubling of BOs. Indeed, consider a VHES with
zero momentum ky ¼ 0 in the lower band at point A in
Fig. 1(b). Because of the constant force, it moves up to

FIG. 1. (a),(c) Domain walls of zigzag type (a) and bearded
type (c), between two inverted, staggered honeycomb lattices.
The red-shaded regions represent the domain walls, and the
rectangular dashed yellow boundaries on the left and right of the
domain walls are used to illustrate the glide-reflection symmetry
in (a) and mirror symmetry in (c). (b),(d) Band structures of the
lattices corresponding to (a),(c). Red curves represent the VHESs,
while the black curves represent bulk states. Blue dots on the red
curves represent VHESs at the center (ky ¼ 0) or boundaries
(ky ¼ �K=2) of the Brillouin zone, respectively. Note that
VHESs (red curves) are localized in the x direction but the bulk
states (black curves) are delocalized in the x direction, and in
what follows we are going to excite only the localized states.
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point B at the Brillouin border where the lower band
crosses with the upper band. Upon crossing, it reappears at
the opposite border C, but now on the upper band. It does
so because the phase distributions of the VHESs or the
pseudospin, as defined in relation to it, precisely match
between the upper and lower bands at the Brillouin zone
border [32]. Conversely, the phase or pseudospin of the
VHESs at the two edges of the same band is completely
opposite (orthogonal), preventing movement along the
same band across the Brillouin zone.
Therefore, after the band crossing, the VHES at point C

continues moving up along the upper band until it reaches
the band edge at point B, where it undergoes another band
crossing and moves back to the lower band, and ultimately
return to its initial position A. Thus, unlike the bearded
domain case, where only one band is involved throughout
the BOs, the zigzag domain involves sequential traversal of
two bands. This means that they must traverse the Brillouin
zone twice, or a total distance of 2K=β to complete a
full BOs.
The aforementioned analysis was confirmed through

direct simulations of propagation using Eq. (1), with an
excitation condition being a VHES that is horizontally
localized and vertically modulated by a broad Gaussian
envelope of width w ¼ 8 and centered at, say, y ¼ y0 ¼ −6,
expressed as Ψðx; yÞjz¼0 ¼ ψðx; y; kyÞ exp½−ðy − y0Þ2=w2�.
Specifically, we selected the Bloch wave with momentum
ky ¼ 0 corresponding to pointA in Figs. 1(b) and 1(d). Such
selected VHESs initially move along the domain wall in the
positive y direction [Figs. 2(a) and 2(b)]. After reaching their
maximum displacement, they return to their initial positions,
and a new cycle starts. To quantify the oscillation, the
variation of COM of the wave packet, defined by
yc ¼ ∬Ψ�yΨdxdy, was monitored [Fig. 2(c)]. Our results
clearly show that while the bearded state completes one full
BOs at z ¼ 27, the counterpart wave packet in the zigzag
domain only reaches its maximum displacement, i.e., com-
pleting only half of its BO cycle. Subsequently, it takes an
additional distance of 27 for the wave packet to return to its

initial position and complete one full oscillation cycle. By this
distance, the wave packet in the bearded domain has already
completed two full oscillations. Note also, as the amplitude of
BOs is proportional to the width of the involved band(s)
(divided by the force β), the amplitude of two-bandBOs in the
zigzag domain wall is much larger (around 4 times larger in
this case) than that of one-band BOs in the bearded one.
We experimentally investigated BOs with the setup in

Fig. 3(a). A Nd: YAG laser beam (λ ¼ 532 nm) was split
into two beams: beam a, with ordinary polarization, writing
the required lattice structure into SBN, while beam b, with
extraordinary polarization, probing the lattice and studying
the BOs. Note that the crystal’s large electro-optic
anisotropy was utilized in the polarization configuration,
to ensure that the probe experiences strong modulation of
the lattice, but the induced lattice remains undistorted
during propagation [33,34]. The writing beam passed
through a rotating diffuser, which made it partially spatially
incoherent, and then went through an amplitude mask that
has a pattern matching the structure of the desired writing
beam, as shown in the bottom-right corner of Figs. 3(b) and
3(c). The mask was then imaged onto the input facet of the
crystal through a 4f optical system with an appropriate filter
at the Fourier plane (see the experimental details in [32]).
This process generated an unconventional lattice-forming

FIG. 2. Simulation results for the VHESs evolving at the zigzag
(a) and bearded (b) domain walls, respectively. In both figures,
the horizontal green lines indicate the location of COM (yc) of the
light beam, that are further shown in (c). The dashed vertical blue
lines shown in (c) indicate the point where the light beam along
the zigzag domain wall attains its maximum displacement, which
is equivalent to half of its period of BOs. E0 ¼ −30, η ¼ 35,
I0 ¼ 0.25, w ¼ 8.

FIG. 3. (a) Schematic diagram of the experimental setup. λ=2,
half-wave plate; PBS, polarization beam splitter; BS, beam
splitter; BE, beam expander; RD, rotating diffuser; ID0, iris
diaphragm; ID1, Fourier filter with six holes; ID2, phase mask;
SLM, spatial light modulator. The panel at the bottom-right
corner shows an example of a refractive index ramp δn with a
width η ¼ 120 μm. (b),(c) The lattice-forming light field mea-
sured at the output of the SBN, showing staggered honeycomb
lattice profiles with zigzag (b) and bearded (c) domain walls. The
domain walls are depicted within green rectangular-dashed
boundaries. The brightness of the color in the lattices is propor-
tional to the local light intensity. The insets at the bottom-right
corners of (b) and (c) show the designed structures on the
amplitude mask, while the inset at the top right of (b) displays the
probe light beam at the front facet of the crystal.
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beam that remains nondiffracting over a distance of at least
2 cm in the sample [42,43]. Furthermore, to introduce a
ramp of refractive index across the sample, a white light
diffracted by a sharp razor blade was utilized to laterally
illuminate the SBN [15,16,44].
Figures 3(b) and 3(c) show the optically induced staggered

honeycomb lattices with zigzag and bearded domains,
overlaid with a refractive index gradient. The total induced
refractive index change is given by δn ¼ −γ=ð1þ IL þ IGÞ,
where γ ¼ n3er33E=2 ¼ 3.56 × 10−4 and r33 is the nonlinear
electro-optic coefficient. The intensity of the lattice-writing
beam is IL ≈ 2.5 mW=cm2, and the maximum intensity of
the white light is IG ≈ 4.2 mW=cm2. An example of the
refractive index ramp δng is given in Fig. 3(a). As shown, the
index change over one period ay ¼ 55 μmdue to the ramp is
∼10−5, 1 order of magnitude smaller than the variation of
index of the periodic lattice ∼10−4. This implies that the
influence of the gradient on the profiles of Bloch modes is
negligible, and its main effect is to initiate the variation of
Bloch momentum of the wave packet in the Brillouin zone.
The lattices are excited by launching into both domain

walls a Gaussian laser beam with an elliptical shape that
corresponds to the numerical simulations. The beam has a
width of 90 μm along the domain wall extension (y axis),
and 30 μm across the domain wall (x axis). Its elliptical
shape ensures that it is wide enough along the y direction so
that only one Bloch mode at ky ¼ 0 is excited, yet narrow
enough to fit into the width of the domain wall. Thanks to
the topological protection of the valley-Hall effect, both
types of the VHESs are efficiently excited, as evidenced by
their quick reshaping into the “zigzag” and “bearded”
profile, and remain well-trapped in the domain wall while
moving along it, without radiating into the lattice bulk
[Figs. 4(a) and 4(b)]. Under the effect of the index ramp,
both states are observed to drift as a whole along the
domain wall. The zigzag states exhibit a more profound
drift than that in the bearded domain, yet the overall shift
for the latter is still measurably observable in terms of their
COM, which we extracted from their intensity distribution.
As the plots show, initially, both VHESs move in the
positive direction of the y axis and, at a certain distance,
arrive at their maximum displacements before moving
back. Our results clearly show that the maximum displace-
ment for the light beam in the zigzag domain wall appears
much later than in the bearded domain. Comparing their
COM finds that when the bearded state completes a full
cycle at z ≈ 16 mm, the zigzag state has only just reached
its maximum displacement. This observation clearly indi-
cates that the period of the BOs for zigzag states is twice
that of bearded states, as theoretically predicted.
This period-doubling effect is further demonstrated in

Fig. 4(c), where we compare the evolution of the COM for
both VHESs at three different widths of the induced index
ramp η, i.e., η ¼ 120; 90; 60 μm, corresponding to three
different gradients β of refractive index [32]. For each η, the

experiment was conducted five times under the same
parameter settings, thus each curve in Fig. 4(c) is the
average of the outcomes obtained from five experimental
repetitions.
As expected, a larger gradient of refractive index leads to

faster BOs of the wave packets. Therefore, the period of
BOs for zigzag states is about 32 mm at η ¼ 120 μm, but it
is reduced to around 20 mm at η ¼ 60 μm. This allows us
to observe a complete cycle of BOs within the 2 cm long
sample [Fig. 4(c), right]. However, it is worth noting that
the period at η ¼ 60 μm is not exactly halved compared to
η ¼ 120 μm, as would be expected in the ideal case. This
discrepancy is attributed to the relatively narrow width of
the index ramp (η ¼ 60 μm) compared to the width of the
wave packet, which has a fixed y width of 90 μm. Because
of this, the light beam experiences a slightly shallower
“local” index ramp when oscillating near the ramp boun-
dary, compared to oscillating in the ramp center. As a result,
the effective ramp experienced by the light wave packet is
reduced, leading to a slightly longer period. Among others
[32], the slowly varying gradient of the index also explains
the unevenness in the overall oscillation seen in the right
two panels of Fig. 4(c), compared to the more ideal
oscillation observed in the first panel. Surprisingly, how-
ever, although the oscillation speed may slowly change
during the oscillation, which could potentially affect the

FIG. 4. Experimental observation of BOs at zigzag (a) and
bearded (b) domain walls. The horizontal green lines indicate the
position of COM of the light beam. The index gradient applied in
the lattices increases in the downward direction, and for the
shown particular case, the width of the index gradient is
η ¼ 120 μm. Note in the bearded state case (b), the close
proximity of two horizontal potential maxima makes the light
spots between them unresolvable [cf. Fig. 2(b)]. (c) Displacement
of the COM versus propagation distance z under three different
index gradients.
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period and amplitude of oscillation, the relative relationship
of period doubling between zigzag and bearded domain
walls remains fixed. This is specifically illustrated by the
vertical dashed blue lines, which represent the distance
the light beam at the zigzag domains travels to reach the
maximum displacement (half of its oscillation period), is
found to match well with the distance at which the light
beam at the bearded domains completes one full oscilla-
tion cycle!.
Finally, Fig. 4(c) also reveals a remarkable relationship

between the amplitude of BOs for the two VHESs. As their
oscillation periods decrease with the decreasing of η (or
increasing β), their amplitudes also decrease. However, in
all the shown cases, the amplitude of oscillation in zigzag
states is significantly larger (2 times larger) compared to the
bearded states, reflecting that the former BOs involve two
bands while the latter involves only one.
Before closing, it is worth noting that the glide-reflection

symmetry, which originates in the band degeneracy and
period doubling of BOs in this Letter, is just one aspect of
broader nontrivial point-group G [45]. Apart from the
symmetries of glide of reflection, other symmetries of G,
including the symmetry of rotations, inversion, and screw
rotations, are also often present, that in general indicates
BOs with μ-multiple periods [46]. Hence, our experimental
observation of period doubling (μ ¼ 2) marks the first
measurement of an entire family of topological invariants,
and is expected to promote general measurements of the
topological invariants μ characterizing the relevant topo-
logical materials.
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