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We compute the sphaleron rate of Nf ¼ 2þ 1 QCD at the physical point for a range of temperatures
200 MeV ≲ T ≲ 600 MeV. We adopt a strategy recently applied in the quenched case, based on the
extraction of the rate via a modified version of the Backus-Gilbert method from finite-lattice-spacing and
finite-smoothing-radius Euclidean topological charge density correlators. The physical sphaleron rate is
finally computed by performing a continuum limit at fixed physical smoothing radius, followed by a zero-
smoothing extrapolation. Dynamical fermions were discretized using the staggered formulation, which is
known to yield large lattice artifacts for the topological susceptibility. However, we find them to be rather
mild for the sphaleron rate.
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Introduction.—The rate of real-time QCD topological
transitions, the so-called strong sphaleron rate,

Γsphal ¼ lim
Vs→∞
tM→∞

1

VstM

��Z
tM

0

dt0M

Z
Vs

d3xqðt0M; x⃗Þ
�
2
�

¼
Z

dtMd3xhqðtM; x⃗Þqð0; 0⃗Þi; ð1Þ

where tM is the Minkowski time and q ¼ ðαs=8πÞGG̃ is the
QCD topological charge density, plays a crucial role in
several phenomenological contexts.
For example, during heavy-ion collisions, where a hot

medium of quarks and gluons and strong magnetic fields
are created for a short time, a nonvanishing sphaleron rate
in the quark-gluon plasma can create local imbalances in
the number of left- and right-handed quark species, leading
in particular to the so-called chiral magnetic effect [1–5],
i.e., the appearance of an electric current flowing in the
quark-gluon medium in the parallel direction to the
magnetic field.
Another example is offered by axion phenomenology,

where recently it has been argued that the strong sphaleron
rate plays an intriguing role [6]. As a matter of fact, the
QCD strong sphaleron rate describes the rate of axion
creation and annihilation in the early Universe, and such
quantity directly enters the Boltzmann equation for the time

evolution of the axion number distribution in the cosmo-
logical medium.
It is therefore clear that a first-principles and fully

nonperturbative computation of the QCD sphaleron rate
at finite temperature constitutes an essential input to
provide fundamental phenomenological predictions about
the Standard Model and beyond. However, so far results in
the literature have been limited to the quenched case, i.e.,
the pure-gauge Yang-Mills theory [7–11].
In this Letter we present a first nonperturbative deter-

mination of the sphaleron rate in 2þ 1 QCD at the physical
point from numerical Monte Carlo simulations on the
lattice above the chiral crossover. In particular, we explored
a temperature range 200 MeV≲ T ≲ 600 MeV, and the
rate was computed adopting the strategy we recently
applied in the quenched case in [11].
Methods.—We performed Monte Carlo simulations of

Nf ¼ 2þ 1 QCD at the physical point for five temper-
atures: T ¼ 230, 300, 365, 430, and 570 MeV. For each
temperature, we explored 3–5 values of the lattice spacing,
keeping the physical lattice volume constant and choosing
the bare coupling and the bare quark masses so as to move
on a line of constant physics, where ms=ml ¼ 28.15 and
mπ ≃ 135 MeV were kept constant and equal to their
physical value [12–14]. The gauge sector has been dis-
cretized by using the tree-level Symanzik improved Wilson
gauge action, while the quark sector was discretized
adopting rooted stout staggered fermions.
Gauge configurations have been generated adopting the

standard rational hybrid Monte Carlo updating algorithm,
used in combination with the multicanonical algorithm.
Above the QCD chiral crossover Tc ≃ 155 MeV, the
topological susceptibility χ ≡ hQ2i=V, Q ¼ R

d4x qðxÞ,
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is suppressed as a power law of the temperature [15–18].
Because of such suppression, on typical lattice volumes
hQ2i ¼ Vχ ≪ 1, topological fluctuations are suppressed
and the probability distribution of Q is dominated by
Q ¼ 0. Thus, large statistics are needed to properly sample
the topological charge distribution. The multicanonical
algorithm allows one to easily bypass this issue by adding
a topological bias potential to the gauge action that
enhances the probability of visiting suppressed topological
sectors, without spoiling importance sampling. Expectation
values with respect to the original path-integral probability
distribution are then exactly recovered via a standard
reweighting [18–21].
The first step to determining the sphaleron rate is to

obtain Euclidean lattice topological charge density corre-
lators. The charge density was discretized using the
standard gluonic clover definition:

qLðnÞ ¼
−1
29π2

X�4

μνρσ¼�1

εμνρσTrfΠμνðnÞΠρσðnÞg; ð2Þ

where ΠμνðnÞ is the plaquette and εð−μÞνρσ ¼ −εμνρσ .
We first compute the time profile QLðntÞ of the topo-

logical charge QL:

QLðntÞ ¼
X
n⃗

qLðnt; n⃗Þ; QL ¼
X
n

qLðnÞ: ð3Þ

Then, we obtain the topological charge density correlator in
dimensionless physical units as

GLðtTÞ
T5

¼ N5
t

N3
s
hQLðnt;1ÞQLðnt;2Þi; ð4Þ

where Ns and Nt are the spatial and temporal extents of the
lattice and

tT ¼ min fjnt;1 − nt;2j=Nt; 1 − jnt;1 − nt;2j=Ntg ð5Þ

is the physical time separation between the sources entering
the correlator.
The topological charge profiles are computed on

smoothened configurations. Smoothing is used to dampen
UV fluctuations affecting the two-point function of the
correlator of the lattice topological charge density, which
would otherwise result in additive and multiplicative
renormalizations [22–25]. Several smoothing algorithms
have been proposed, e.g., cooling [26–32], stout smearing
[33,34], or gradient flow [35,36], all agreeing when
properly matched to each other [32,37,38]. In this work
we adopt cooling for its numerical cheapness. A single
cooling step consists in aligning each link to its relative
staple, so that the local action density is minimized.
Concerning the rate computation, we recall that Eq. (1) is

of no use on the lattice, being it expressed in terms of

Minkowskian correlators. However, the Kubo equation
relates the sphaleron rate to the spectral density ρðωÞ of
the Euclidean topological charge density correlator GðtÞ ¼R
d3x hqðxÞqð0Þi (here t is the imaginary time) [39]:

Γsphal ¼ 2T lim
ω→0

ρðωÞ
ω

; ð6Þ

GðtÞ ¼ −
Z

∞

0

dω
π

ρðωÞ cosh fω½t − 1=ð2TÞ�g
sinh ½ω=ð2TÞ� : ð7Þ

Therefore, determining the sphaleron rate on the lattice
translates into the problem of inverting the integral relation
(7) to compute ρðωÞ from lattice correlators GLðtÞ.
Strategies to solve inverse problems have been widely
studied in the literature [9,40–56]. Here we rely on the
recently proposed modification [49] of the Backus-Gilbert
inversion method [57].
On general grounds, the Backus-Gilbert method assumes

that the spectral density can be approximated via

ρ̄ðω̄Þ ¼ −πω̄
X1=T
t¼0

gtðω̄ÞGðtÞ; ð8Þ

where the gtðω̄Þ are unknown coefficients that need
to be determined. In our case, we are just interested in
ω̄ ¼ 0:

�
ρ̄ðω̄Þ
ω̄

�
ω̄¼0

¼ −π
X1=T
t¼0

gtð0ÞGðtÞ ¼
Γsphal

2T
: ð9Þ

The determination of the gt coefficients is achieved through
the minimization of a suitable functional. In particular we
followed the strategy described in Ref. [49], which was also
the one we employed in the quenched case in Ref. [11].
Given the technicalities involved in such process, more
details on this point are given in the Supplemental
Material [58].
The last points to discuss are how to treat finite lattice

spacing effects, and what is the impact of smoothing on the
sphaleron rate. Let us start recalling that, after ncool cooling
steps are performed on the gauge fields, UV fluctuations
are damped out, up to a distance known as the smoothing
radius rs ∝ a

ffiffiffiffiffiffiffiffiffi
ncool

p
. The first step, thus, is to take the

continuum limit at fixed smoothing radius. In our setup,
since ncool ∝ ðrs=aÞ2 and N−1

t ¼ aT, this means to keep
ncool=N2

t ∝ ðrsTÞ2 constant for each lattice spacing.
Assuming Oða2Þ corrections, we perform continuum
extrapolations according to the fit function:

Γsphal;L

�
Nt;

ncool
N2

t

�
¼ Γsphal

�
ncool
N2

t

�
þ c
N2

t
; ð10Þ
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where Γsphal;LðNt; ncoolÞ stands for the sphaleron rate
obtained from the lattice correlator GLðtTÞ computed from
an N3

s × Nt lattice after ncool cooling steps.
In principle, one would expect a residual dependence of

the continuum-extrapolated sphaleron rate on the smooth-
ing radius, i.e., a residual dependence of Γsphal on ncool=N2

t .
However, for all temperatures we found that Γsphal is
practically independent of ncool=N2

t for sufficiently small
values of ncool. The same behavior was observed in the
quenched theory [11]. Such evidence can be physically
explained on the basis of the definition of the rate itself: the
dominant contribution to ρðωÞ in the origin is given by the
behavior of the topological charge density correlator at
large time separations, and it is reasonable to expect it to be
largely unaffected by the UV cutoff introduced by cooling,
which mostly affects the short-distance behavior of GLðtÞ.
Results.—All simulation points are summarized in

Table I, while in Table II we summarize our results for
the sphaleron rate as a function of the temperature.
First of all, we want to compare our full QCD results

with the previous quenched determinations of [7,10,11].
Such comparison is shown in Fig. 1. We observe that full
QCD determinations turn out to be slightly larger (although
of the same order of magnitude) than the quenched ones,
both when we report the rates in terms of the absolute T in

MeV, and when we report them in terms of T=Tc, where for
full QCD results we used the chiral crossover temperature
Tc ¼ 155 MeV and for quenched results we used the
critical temperature Tc ¼ 287 MeV.
We now move to the comparison of our results with

available analytical predictions in the literature. In
Refs. [59,60], the following semiclassical estimate for
the sphaleron rate is reported:

Γsphal

T4
≃ C1α

5
s ; ð11Þ

with αs the running strong coupling.
Using the one-loop result for the temperature running of

αsðTÞ reported in [61], one obtains

Γsphal

T4
¼ C1

�
C2

logðT2=Λ2
QCDÞ

�
5

ð12Þ

≡
�

A0

logðT2=T2
cÞ þ logðB2

0Þ
�
5

; ð13Þ

where B0 ¼ Tc=ΛQCD ≃ 0.46ð2Þ using the latest world-
average FLAG value for the 3-flavor dynamically gener-

ated scale ΛðMSÞ
QCD ðμ ¼ 2 GeVÞ ≃ 338ð12Þ MeV [62], and

where the overall prefactor can be estimated to be A0 ¼
C1=5
1 C2 ≃ 3.08ð2Þ using the expressions for C1 and C2

reported, respectively, in Refs. [59,61].
Inspired by the functional form of (12), we performed a

best fit of our data for Γsphal=T4 as a function of T using the
following fit function:

Γsphal

T4
¼

�
A

logðT2=T2
cÞ þ logðB2Þ

�
C
: ð14Þ

Our data are well described by Eq. (14) with C ¼ 5, with a
reduced chi-squared of 0.36=3. Actually, one should be
cautious about this apparent success, in particular regarding
the value of C. Indeed, the fit returns a similarly good value
of the reduced chi-squared for a very large range of values
of C, while if this parameter is left free, the best fit returns a
value C ¼ 5.6 with a 100% error. This is understandable,
since our temperature range is still too small, and our

TABLE I. Summary of simulation parameters. The bare param-
eters β, ams and the lattice spacings a have been fixed according
to results of Refs. [12–14], and the bare light quark mass aml is
fixed through ms=ml ¼ 28.15. Simulations marked with * have
been performed without multicanonical algorithm as hQ2i was
sufficiently large to observe a reasonable number of fluctuations
of the topological charge.

T [MeV] T=Tc β a [fm] ams × 10−2 Ns Nt

230 1.48 3.814* 0.1073 4.27 32 8
3.918* 0.0857 3.43 40 10
4.014 0.0715 2.83 48 12
4.100 0.0613 2.40 56 14
4.181 0.0536 2.10 64 16

300 1.94 3.938 0.0824 3.30 32 8
4.059 0.0659 2.60 40 10
4.165 0.0549 2.15 48 12
4.263 0.0470 1.86 56 14

365 2.35 4.045 0.0676 2.66 32 8
4.175 0.0541 2.12 40 10
4.288 0.0451 1.78 48 12
4.377 0.0386 1.55 56 14

430 2.77 4.280 0.0458 1.81 32 10
4.385 0.0381 1.53 36 12
4.496 0.0327 1.29 48 14
4.592 0.0286 1.09 48 16

570 3.68 4.316 0.0429 1.71 32 8
4.459 0.0343 1.37 40 10
4.592 0.0286 1.09 48 12

TABLE II. Summary of the determinations of the sphaleron rate
of 2þ 1 full QCD at the physical point.

T [MeV] Γsphal=T4

230 0.310(80)
300 0.165(40)
365 0.115(30)
430 0.065(20)
570 0.045(12)
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statistical errors still too large, to get a precise estimate of
the power of a logarithmic function.
If we fix C to the value of the semiclassical prediction,

we obtain the best fit depicted in Fig. 1 as a dashed line,
while the uniform shaded area represents the corresponding
error band; the fit parameters turn out to be A ¼ 2.96ð51Þ
and B ¼ 4.3ð1.7Þ. We note that we find a remarkable
agreement for the prefactor A with the prediction A0, while
we find the pole parameter B to be larger by an order of
magnitude compared to B0. This clarifies why the semi-
classical prediction overestimates by more than 2 orders of
magnitude the lattice data; cf. Fig. 1.

As a final remark, we would also like to mention that,
despite the fact that a semiclassically inspired logarithmic
power law fits well our full QCD results for the sphaleron
rate, also other functional forms could describe the T
behavior of our data. For example, a fit function of the type

Γsphal

T4
¼ Ã

�
T
Tc

�
−b
; ð15Þ

works perfectly fine as well, yielding a reduced chi-squared
of 0.48=3, cf. Fig. 2, where the best fit with (15) is depicted
as a dashed line and a shaded area. Fit parameters turn out
to be Ã ¼ 0.71ð23Þ and b ¼ 2.19ð38Þ.
Conclusions.—In this Letter we presented the first

computation of the sphaleron rate in 2þ 1 full QCD with
physical quark masses as a function of the temperature in
the range 200 MeV≲ T ≲ 600 MeV.
The sphaleron rate was obtained from the inversion of

finite lattice spacing and finite smoothing-radius lattice
Euclidean topological charge density correlator from the

FIG. 1. Sphaleron rate for 2þ 1 full QCD at the physical point
as a function of temperature T (diamond points). Dashed line and
uniform shaded area represent best fit of our results according to
(14). Previous quenched determinations of the rate are also
shown: Refs. [7,8] (square points), Ref. [10] (round points),
and Ref. [11] (starred point). Top plot: x axis expressed in terms
of absolute temperature T converted in MeV. Bottom plot: x axis
expressed in terms of T=Tc, where Tc ¼ 155 MeV and Tc ¼
287 MeV for full QCD and quenched results respectively. Starred
shaded area depicts semiclassical prediction (13).

FIG. 2. Same as Fig. 1 but using (15) to fit our data.
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modified Backus-Gilbert method recently introduced by
the Rome group. Then, the physical value of the sphaleron
rate was obtained performing a continuum limit at fixed
smoothing radius, followed by a zero-smoothing limit.
Concerning the comparison of our full QCD determi-

nations with previous quenched results, we found them to
be larger. Concerning instead the temperature behavior of
our data, our results for Γsphal=T4 can be fitted well by a
semiclassically inspired functional form, predicting a
logarithmic power-law decay of the rate. However, also
other functional forms, such as a regular power-law decay
of the rate, are shown to describe well our data.
Given that in this work we adopted a nonchiral

discretization of the Dirac operator, the recovering of
chiral symmetry in the continuum limit is a delicate point.
Indeed, it is well known that the explicit breaking of the
chiral symmetry of the staggered formulation leads to
significant lattice artifacts in the topological susceptibility
[15,16,18,20,63–65], that can be mainly traced back to a
bad suppression of Q ≠ 0 charge configurations in the path
integral, due to the absence of exact zero modes.
However, as shown in the Supplemental Material [58],

thanks to the multicanonic algorithm we can easily com-
pare correlators projected in a fixed topological sector with
those obtained without projection. We observe, for our
smallest temperature, where χ is less suppressed and thus
the weight in the path integral of nonzero charge configu-
rations is larger, that they perfectly agree within errors. This
observation points out that a bad suppression of nonzero
charge sectors, due to the absence of exact zero modes,
cannot be a significant source of lattice artifacts in the
sphaleron rate computation. As a matter of fact, we find
lattice artifacts for the sphaleron rate to be extremely mild
(see Supplemental Material [58]).
Finally, we stress that the same ensembles used here

were also employed in [18] to compute the topological
susceptibility at finite temperature, and for all temperatures
the continuum limit of the gluonic discretization of χ was
always confirmed by that obtained from a fermionic
discretization based on the lowest-lying modes of the
staggered operator [66], which is affected by much smaller
artifacts.
In conclusion, these observations make us confident that

our continuum extrapolations for Γsphal are reliable. It
would be extremely interesting to confirm our findings
about the continuum scaling of Γsphal using a different
fermionic discretization. Moreover, it would also be
extremely interesting to repeat our calculation of the
sphaleron rate, employing a different fermionic definition
of the lattice topological charge density, based on the index
theorem, which is expected to suffer for smaller lattice
artifact, or changing the pion mass, to explicitly check the
behavior of Γsphal with ml.
Another intriguing outlook would be to explore

higher temperatures towards the GeV scale, in order to

better clarify the actual temperature behavior of Γsphal. At
present, numerical limitations due to the infamous topo-
logical freezing problem [67–71] prevent us to reach higher
temperatures, which would require one to simulate very
fine lattices with a≲ 0.01 fm, but possible algorithmic
developments could permit such simulations in the
future [72–76].
Finally, it would be interesting to extend present com-

putations to the case of nonzero spatial momentum k⃗. As a
matter of fact, the momentum dependence of the sphaleron
rate is also of great phenomenological interest to compute
the axion number density after decoupling using the
Boltzmann equation [6].
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