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This Letter presents the first lattice QCD computation of the coupled channel πΣ-K̄N scattering
amplitudes at energies near 1405 MeV. These amplitudes contain the resonance Λð1405Þ with strangeness
S ¼ −1 and isospin, spin, and parity quantum numbers IðJPÞ ¼ 0ð1=2−Þ. However, whether there is a
single resonance or two nearby resonance poles in this region is controversial theoretically and
experimentally. Using single-baryon and meson-baryon operators to extract the finite-volume station-
ary-state energies to obtain the scattering amplitudes at slightly unphysical quark masses corresponding to
mπ ≈ 200 MeV andmK ≈ 487 MeV, this study finds the amplitudes exhibit a virtual bound state below the
πΣ threshold in addition to the established resonance pole just below the K̄N threshold. Several
parametrizations of the two-channel K matrix are employed to fit the lattice QCD results, all of which
support the two-pole picture suggested by SU(3) chiral symmetry and unitarity.
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Introduction.—The strong nuclear force is described by
quantum chromodynamics (QCD) which governs the
dynamics and interactions of quarks and gluons.
Because of an important property of QCD known as
asymptotic freedom, the use of perturbation theory is
useful for QCD scattering calculations at very high ener-
gies. The binding of quarks and gluons to form hadrons,
such as protons and neutrons, is a low-energy phenomenon
of QCD, requiring a nonperturbative calculational tech-
nique. Such techniques are difficult to apply, so under-
standing the hadron spectrum of QCD remains an
important outstanding issue for the standard model of
particle physics. In particular, resonances such as the
Λð1405Þ resonance defy the naive quark-model picture

of baryons and mesons. In this Letter, a Markov-chain
Monte Carlo method using QCD formulated on a space-
time lattice is applied to shed light on the puzzling hadron
resonance structure in the region of the Λð1405Þ.
The history of the Λð1405Þ resonance began in

Refs. [1,2] which suggested that the low-energy K−p
amplitude measured in bubble chamber experiments
implies a resonance in the π−Σþ spectrum just below the
K−p threshold. The intervening decades have witnessed
considerable experimental progress in this system [3,4], but
a consensus about whether there is a single resonance or
two nearby resonance poles in this energy region has not
yet been reached. This is evidenced by the most recent
Particle Data Group review [5] which lists an additional
Λð1380Þ resonance pole with lower confidence. An
improved determination of the K−p scattering length [6]
was enabled by measurements of the energy shift and width
of kaonic hydrogen by the SIDDHARTHACollaboration at
DAΦNE [7]. The angular analysis of the process γ þ p →
Kþ þ Σþ π by the CLAS Collaboration at JLab deter-
mined the line shapes [8] and the spin parity quantum
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numbers [9] JP ¼ 1=2−. The CLAS data have been
analyzed in Refs. [10,11], which suggest the existence
of two isoscalar poles. Recent data from the BGOOD
Collaboration [12] and a preliminary study by the GlueX
Collaboration [13] also support the two-pole scenario.
Similarly, interhadron potentials determined by the
ALICE Collaboration using the “femtoscopy” approach
favor the two-pole picture [14]. However, recent data from
J-PARC is successfully described by a single pole [15] and
a combined analysis in Ref. [16] concludes that a single
resonance sufficiently describes the experimental data,
without ruling out the two-pole description.
On the theoretical side, the relatively low mass and

quantum numbers of the Λð1405Þ resonance are difficult to
accommodate in constituent quark models [17]. However,
some insight is gained from SU(3) chiral effective theory
[18–20]. The leading-order interaction between the octet of
Goldstone bosons and (ground-state) octet baryons [21,22]
predicts an attractive interaction in both the flavor-SU(3)
singlet and octet combinations. After employing a unitar-
ization procedure, this attraction leads to two poles in the
scattering matrix analytically continued to complex center-
of-mass energies [23]. Despite the agreement of nearly all
chiral approaches (which are reviewed in Refs. [24–26]) on
the two-pole scenario, the position of the lower pole
remains somewhat poorly constrained [5]. Recent theoreti-
cal works about the Λð1405Þ resonance can be found in
Refs. [27–34].
Lattice QCD is a first-principles method that can be

used to unambiguously determine the nature of the
Λð1405Þ resonance and provide two unique insights.
First, the elastic πΣ scattering amplitude can be computed
directly below the K̄N threshold. This process is difficult
to access experimentally and lattice results may help
identify and constrain a second lower pole. Second, the
motion of the poles in the complex plane upon varying the
u, d, and s quark masses away from their physical values
provides additional input to future chiral effective theory
analyses [35,36].
The computation of real-time two-to-two scattering

amplitudes below three-hadron thresholds from imagi-
nary-time lattice QCD calculations is well developed and
relies on the finite-volume spectrum of interacting two-
hadron states [37–44]. Previous lattice QCD computations
of the Λð1405Þ resonance have not computed scattering
amplitudes and instead aimed only to isolate the lowest
finite-volume energy eigenstate using single-baryon three-
quark interpolating fields [45–53]. Using only such oper-
ators is known to be insufficient to extract scattering
information, such as scattering amplitudes and pole loca-
tions. The K̄N scattering length for I ¼ 0 has been
computed long ago using the quenched approximation
[54], but mixing with the kinematically open πΣ channel
was neglected. The πΣ and K̄N scattering lengths in other
(nonsinglet) flavor and isospin combinations not directly

relevant for the Λð1405Þ resonance have been computed in
Refs. [55–57].
This work computes the isospin I ¼ 0 and strangeness

S ¼ −1 coupled-channel πΣ-K̄N scattering amplitudes
below the ππΛ threshold from lattice QCD for the first
time. A single ensemble of gauge configurations with
dynamical u, d, and s quarks is employed with pion and
kaon masses of mπ ≈ 200 MeV and mK ≈ 487 MeV,
respectively, which deviate slightly from their physical
values mphys

π ≈ 140 MeV and mphys
K ≈ 495 MeV. The u and

d quark masses are set to be equal and electroweak
interactions are neglected, so isospin is a good quantum
number. The main result of this work is a set of para-
metrizations of the amplitudes which are constrained by fits
to the finite-volume energy spectrum. These parametriza-
tions can accommodate zero, one, or two poles, but when fit
to the lattice results and analytically continued to the
complex-energy plane, they all confirm the presence of
two poles, the positions of which vary little and are
consistent with predictions from chiral effective theory.
Our use ofmπ > mphys

π moves the lower pole just below the
πΣ threshold leading to its unambiguous identification as a
virtual bound state. The higher pole near the K̄N threshold
is also clearly present.
This Letter provides a summary of the computation

while technical details are left to a companion paper [58].
The main result is Fig. 1, which shows fits to the finite-
volume spectrum using all parametrizations of the coupled-
channel amplitude and the associated pole positions.
Statistical errors are shown for the parametrization with
the lowest Akaike information criterion (AIC) value.
Determination of finite-volume energies.—The ensemble

of gauge configurations and algorithm for evaluating
correlation functions are briefly reviewed here and dis-
cussed more deeply in the companion paper. The Nf ¼
2þ 1 QCD gauge configurations comprise the “D200”
ensemble generated by the Coordinated Lattice Simulations
(CLS) consortium [59] which is detailed in Table I. The
lattice spacing is determined in Ref. [60] and updated in
Ref. [61]. All correlation matrices are computed using the
stochastic-LapH [62] implementation of Ref. [63]. The
flexibility afforded by the source-sink factorization and
subsequent computation of correlators via optimized tensor
contractions [64] is particularly advantageous for large
Hermitian correlation matrices containing single-baryon,
πΣ, and K̄N interpolating operators.
The determination of finite-volume stationary-state ener-

gies is also discussed in detail in the companion paper and
summarized here. The interaction shift ΔElab of a lab-frame
energy from a nearby noninteracting energy is extracted
from a single-state fit to the ratio of a diagonalized
correlation function over the product of correlators for
the individual constituents of the nearby noninteracting
energy. The diagonalization of the correlation matrices is
done by solving a generalized eigenvalue problem (GEVP)
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as described inRef. [63].We haveverified the insensitivity of
our extracted energies to reasonable variations of the GEVP
parameters, the use of different nearby noninteracting levels,
and different fit forms. An example energy determination is
shown in Fig. 2 for the ground state of theG1uð0Þ irreducible
representation (irrep), which predominantly contains the

parity-odd, s-wave scattering system. All levels used to
constrain the amplitude are shown in Fig. 3.
Scattering amplitude determination.—In lattice QCD,

scattering amplitudes below three-hadron thresholds are
inferred from finite-volume spectra [37–44] using the
relationship [65]

det½K̃−1ðEcmÞ − BPðEcmÞ� ¼ 0: ð1Þ

The matrix K̃ is related to the usual scattering K matrix
(normalized such that the single-channel equivalent of K̃−1

is the s-wave k cot δ0), and the “box matrix” BP for a
particular total momentum P ¼ ð2π=LÞd (with d∈Z3)

TABLE I. Parameters of the D200 ensemble [59]. The lattice
dimensions in space and time (L and T), as well as the mass of the
pion (mπ) and kaon (mK) are given in units of the lattice spacing
a. In pion mass units, the size of the box is mπL ¼ 4.181ð16Þ.

a (fm) ðL=aÞ3 × T=a amπ amK

0.0633(4)(6) 643 × 128 0.065 33(25) 0.156 02(16)

FIG. 2. Example determination of a finite-volume stationary-
state energy, illustrating the sensitivity of the fitted energy to the
lower end of the fit range (tmin) for the lowest level of the G1uð0Þ
irrep. Each set of points corresponds to a different fit form. The
two-exponential and geometric [63] fits are performed to the
diagonalized correlation function only. The single-exponential
ratio fits are performed to the same correlator divided by either
the product K̄ð0ÞNð0Þ or πð0ÞΣð0Þ of correlators, and the lab
frame energy aElab is reconstructed from the interaction shifts.
The dark horizontal band and filled symbol denote the chosen fit.

FIG. 3. Finite-volume spectrum in the center-of-mass frame
used as input data to constrain parametrizations of the coupled-
channel πΣ-K̄N scattering amplitude. Each column corresponds
to a particular irrep Λðd2Þ of the little group of total momentum
P2 ¼ ð2π=LÞ2d2. Only irreps where the l ¼ 0 partial wave
contributes are included. Dashed lines indicate various thresh-
olds, as labeled. Model energies from the resultant scattering-
amplitude fit are given by blue squares.

FIG. 1. The I ¼ 0 and S ¼ −1 coupled-channel πΣ-K̄N am-
plitude computed on a single lattice QCD gauge-field ensemble
with mπ ≈ 200 MeV as a function of the energy difference to the
πΣ threshold in the center-of-mass frame. The upper panel shows
the transition matrix elements, defined in Eq. (4), using the
K-matrix parametrization with the lowest AIC constrained by the
finite-volume spectrum in the bottom panel. The second panel
shows the model variation for the same quantities using several
parametrizations. The third and fourth panels show the position of
poles in the complex center-of-mass energy (Ecm) plane on the
sheets closest to the physical one: using the parametrization with
the lowest AIC (third panel), and for several parametrizations
(fourth panel). In the second and fourth panel, the transparency of
each line and corresponding pair of pole positions are propor-
tional to exp ½−ðAIC − AICminÞ=2�, where AICmin is the lowest
AIC corresponding to the fit in Eq. (3), which is also shown in the
top panel. The subscripts i, j index the two open scattering
channels. In the lowest panel, the lattice QCD energy levels that
serve as input to the amplitude analyses are displayed. For clarity,
these energy levels are displaced vertically by the total spatial
momentum d2 defined below Eq. (1).
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encodes the reduction in symmetry due to the finite toroidal
spatial volume. Ecm denotes center-of-mass energy.
Equation (1) ignores terms which are suppressed exponen-
tially with the spatial extent L. For scattering between
baryons and pseudoscalar mesons, the K matrix does not
mix different JP, but does couple the πΣ and K̄N channels.
By contrast, the box matrix is diagonal in the two scattering
channels, but mixes partial waves. BP is, however, block
diagonal in the basis given by irreps of the finite-volume
little group of momentum P. Demanding a vanishing
determinant in one of these infinite-dimensional blocks
provides a relationship between theK-matrix and the finite-
volume spectrum in a particular irrep. In practice, partial
waves with orbital angular momentum l > lmax are
neglected; here lmax ¼ 0 is chosen in both the πΣ and
K̄N channels. The systematic error due to this is estimated
by considering lmax ¼ 1, and found to be insignificant for
the near-threshold energy region relevant here. Specifically,
the effect of including additional waves with l ¼ 1 leads to
shifts that are significantly smaller that the statistical
uncertainties in fit results for the l ¼ 0 K matrix. Levels
from all irreps in Table 1 of Ref. [63] to which the JP ¼
1=2− partial wave contributes are employed, as well as one
level each from the G1gð0Þ, F1ð3Þ, and F2ð3Þ irreps for the
lmax ¼ 1 check. All elements of BP required for this work
are given in Ref. [65].
For lmax ¼ 0, the finite-volume spectrum shown in

Fig. 3 constrains the coupled-channel scattering amplitude
via Eq. (1) at center-of-mass energies near the πΣ and K̄N
thresholds. The effective range expansion (ERE) is used to
parametrize the K matrix

Ecm

mπ
K̃ij ¼ Aij þ BijΔπΣ; ð2Þ

where Aij and Bij are symmetric and real coefficients with i
and j denoting either of the two scattering channels
(channel 0 is πΣ and channel 1 is K̄N). Moreover, ΔπΣ ¼
½E2

cm − ðmπ þmΣÞ2�=ðmπ þmΣÞ2 labels the distance to the
πΣ threshold. The parameters, which are the elements of
the A and B matrices, are determined from fits to the lattice
QCD results using the spectrum method [66]. Similar fits
are performed with variations of the above parametrization:
an ERE for K̃−1, removing the factor of Ecm in Eq. (2),
parametrizations inspired by the Weinberg-Tomozawa
potential [19], or using the Blatt-Biedenharn [67] form.
The effect of fixing some (or all) of the elements of B to
zero is also explored.
The correlated-χ2 of the above fits is defined by

comparing the center-of-mass interaction shifts ΔEcm
obtained from the model with those determined from the
ratio fits with a particular choice of the noninteracting
levels. The fit with the lowest AIC value is a four-parameter
fit to Eq. (2). The result is

A00 ¼ 4.1ð1.8Þ; A11 ¼ −10.5ð1.1Þ;
A01 ¼ 10.3ð1.5Þ; B01 ¼ −29ð18Þ; ð3Þ

with fixed B00 ¼ B11 ¼ 0 and χ2 ¼ 10.52 for 11 degrees of
freedom. This fit is shown in Fig. 1. All statistical
uncertainties and correlations are taken into account using
the bootstrap method with 800 samples.
Analytic structure of the amplitude.—The various para-

metrizations discussed above constrain the energy depend-
ence of the amplitudes near the finite-volume energies,
even if they do not accommodate left-hand (cross-channel)
cuts. Knowledge over this limited range enables the
analytic continuation of the scattering amplitude (denoted
T ) to complex Ecm and the identification of poles close to
the real axis on sheets adjacent to the physical one.
TheK matrix, the JP ¼ 1=2− scattering amplitude T , and

the normalized amplitude t shown in Fig. 1 are related by

t−1 ¼ 8πEcm

mπ
T −1 ¼ K̃−1 − ik̂; ð4Þ

where mπ k̂ ¼ diagðkπΣ; kK̄NÞ,

k2πΣ ¼ 1

4E2
cm

λðE2
cm; m2

π; m2
ΣÞ:

Here, λðx; y; zÞ is the Källén function [68] and kK̄N is defined
similarly. Analytic continuation of the coupled channel
πΣ-K̄N amplitude involves four different Riemann sheets,
each labeled by the sign of the imaginary parts of ðkπΣ; kK̄NÞ,
with ðþ;þÞ denoting the physical sheet. Complex poles in
the scattering amplitude correspond to vanishing eigenvalues
in the right-hand side of Eq. (4), and are determined
numerically. In the vicinity of a pole, the divergent part of
the amplitude is

t ¼ mπ

Ecm − Epole

�
c2πΣ cπΣcK̄N

cπΣcK̄N c2K̄N

�
þ…; ð5Þ

where the (complex) residues cπΣ and cK̄N denote the
coupling of the resonance pole to each channel.
Two poles are found on the ð−;þÞ sheet, which is the

one closest to physical scattering in the region between the
two thresholds. Their locations are

E1 ¼ 1392ð9Þð2Þð16Þ MeV;

E2 ¼ ½1455ð13Þð2Þð17Þ − i11.5ð4.4Þð4Þð0.1Þ� MeV; ð6Þ
and their couplings

�����
cð1ÞπΣ

cð1ÞK̄N

����� ¼ 1.9ð4Þð6Þ;
�����
cð2ÞπΣ

cð2ÞK̄N

����� ¼ 0.53ð9Þð10Þ: ð7Þ

The first uncertainty is statistical, the second accounts for
parametrization dependence and for the pole positions, the
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third comes from the uncertainty in the lattice spacing in
Table I. Two poles are present for all parametrizations of the
K matrix. The pole at E1 is likely a virtual bound state,
except in 0.5% of bootstrap samples where it is located on
the physical sheet and thus a bound state, while the one at
E2 is a resonance. The first pole has a stronger coupling to
the πΣ channel, while for the second, the hierarchy is
reversed, a pattern also predicted by chiral unitary models.
Further confirmation of the existence of the lower pole as a
virtual bound state comes from a single-channel analysis of
the energy levels near the πΣ threshold, as shown in Fig. 4.
Conclusion.—This study of πΣ-K̄N scattering in the

Λð1405Þ resonance region is the first coupled-channel
meson-baryon scattering amplitude determined from lattice
QCD. Hermitian correlation matrices using both single-
baryon and meson-baryon interpolating operators for a
variety of different total momenta and irreducible repre-
sentations were used. The analytic continuation of the
amplitudes into the complex center-of-mass energy plane is
stabilized by finite-volume energies just below the πΣ and
K̄N thresholds and clearly exhibits two poles. At a slightly
heavier-than-physical pion mass of mπ ≈ 200 MeV, the
lower pole is a virtual bound state below the πΣ threshold
and the higher a resonance just below the K̄N threshold.
Because of our use of mπ > mphys

π , the real parts of the pole
positions in Eq. (6) are somewhat larger than those
determined at the physical point from experiment
using chiral approaches [5], which lie within the ranges
ReE1 ¼ 1325–1380 MeV and ReE2 ¼ 1421–1434 MeV.
Importantly, this qualitative consistency supports the two-
pole picture predicted by chiral symmetry and unitarity.
Future work with this system includes moving to

physical quark masses which requires the consideration
of three particle effects, but this should not present a major
problem in the region relevant for the Λð1405Þ. Estimating

residual finite-volume and lattice spacing effects is also
planned. Studying this system along the quark-mass
trajectory toward the SU(3)-symmetric point will also test
the motion of the pole positions predicted by chiral
effective theories. Finally, this work opens the door to
investigations of other baryon resonances, such as the
Nð1535Þ, Λð1670Þ, Σð1620Þ, and Ξð1620Þ.

NumPy [69], MATPLOTLIB [70], and the CHROMA software
suite [71] were used for analysis, plotting, and correlator
evaluation.
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