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We study the large-scale dynamics of charged particles in a rapidly oscillating field and formulate its
classical and quantum effective theory description. The high-order perturbative results for the effective
action are presented. Remarkably, the action models the effects of post-Newtonian general relativity on the
motion of nonrelativistic particles, with the values of the emergent curvature and speed of light determined
by the field spatial distribution and frequency. Our results can be applied to a wide range of physical
problems including the high-precision analysis and design of the charged particle traps and Floquet
quantum materials.
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Since the classical work [1] the dynamics of particles in a
rapidly oscillating field has been studied in a wide range of
problems from dynamical chaos [2] to quantum computing
[3,4] and Floquet engineering of quantum materials [5]
with the renowned application in the design of the Paul
traps [6]. Theoretical description of this class of systems is
based on the concept of averaging, when the effect of the
oscillating field is smeared out and the long-time evolution
is governed by the resulting effective interaction naturally
obtained within the high-frequency expansion as a series in
the ratio of the oscillation period to a characteristic time-
scale of the averaged system. The method is well known in
classical mechanics [7] and has been extended to quantum
systems [8–11]. Many subsequent works were dedicated to
the quantum physics applications and the method has been
refined and generalized to include many-body systems, spin,
adiabatic variation of the oscillating field, etc. [12–19].
However, given the importance of the problem, surprisingly
little is know about the high-order perturbative behavior of
the generic three-dimensional systems even at the classical
level. The existing analysis of the quantum systems based on
Floquet theory quickly becomes tedious in high orders too,
and often lacks the proper power counting. Hence, it is no
surprise that the theory of the charged particles confined in
the Paul traps [20] is far less accurate than the one for the
Penning traps [21]. The goal of this work is to introduce a
new foundation for a systematic analysis of the periodically
driven systems in the high-frequency limit. Its core is the
effective field theory approach ideal for the perturbative

treatment of the multiscale problems. We start with the
discussionof a classical system to identify the relevant scales,
expansion parameters, and power counting rules. Then we
elaborate an asymptotic method to compute the classical
effective action to high orders in high-frequency expansion.
Remarkably, the resulting effective interaction models the
dynamics of the nonrelativistic particle in the pseudo-
Riemann space, which gives a new nontrivial example of
“analog gravity” [22]. To quantize the effective action we
develop the high-frequency effective theory (HFET), being
guided by an analogy between the high-frequency expansion
and the nonrelativistic expansion of quantum electrodynam-
ics (QED).
Our starting point is the classical equation of motion for a

particle of mass m subjected to a static force −G and a
periodic force −F cosωt

mR̈þ GðRÞ þ FðRÞ cosωt ¼ 0; ð1Þ

where the dot stands for the time derivative d=dt and the
bold fonts indicate three-dimensional vectors. The periodic
drive is limited to a single harmonic for the clarity of the
presentation but the inclusion of higher harmonics is rather
straightforward. We do not specify the nature of the
external fields to keep the discussion general and consider
the limit of fast oscillation. Let us quantify this condition as
it plays a crucial role for the determination of the expansion
parameter and the power counting rules. For a system of a
characteristic size L the typical velocity acquired by the
particle under the action of the time-independent force is
v ∼ ðGL=mÞ1=2. One can define a “reference” velocity c ¼
Lω and the oscillations are considered fast when v=c ≪ 1.
The main idea of the effective theory approach is to
separate the “slow” large-scale dynamics characterized
by the velocity v from the “fast” small-scale dynamics
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characterized by the velocity c and manifested through the
power corrections in the scale ratio to the effective action.
As we will see, the expansion in v=c shares many features
with the nonrelativistic expansion of the relativistic field
theories, with c playing a role of the speed of light. It is
convenient to introduce the dimensionless variables
ωt → t, R=L → R so that the equation of motion becomes

R̈þ gðRÞ þ f ðRÞ cos t ¼ 0; ð2Þ

with g ¼ G=ðLmω2Þ and f ¼ F=ðLmω2Þ. Note that in the
rescaled variables c ¼ 1 and the expansion parameter is v.
While g ¼ Oðv2Þ by definition, the scaling of the oscillat-
ing term needs to be determined. The leading contribution
of the oscillating field to the effective action is quadratic in
its amplitude and we are interested in the physical systems
where the large-scale dynamics is essentially determined by
the effect of the periodic drive, which should be comparable
to the one of the static field. This requires f ¼ OðvÞ, i.e.,
with the rest of the parameters fixed, the amplitude of the
oscillating field should scale linearly with its frequency.
This does not necessarily mean the actual dependence of
the amplitude on the frequency but rather determines the
relevant range for the ratio of the static and oscillating field
magnitude at a given ω. The above problem appears in a
variety of physical systems and a number of methods have
been developed to disentangle the slow and fast dynamics
in perturbation theory. They share the principal idea of
introducing independent variables for the fast and slow
evolution with subsequent averaging over the fast one. Its
particular realization, however, is crucial to get an efficient
tool for the high-order analysis. We follow the general idea
of the asymptotic method [7] and look for the solution in
the form

R ¼ rþ
X∞

n¼1

½cnðrÞ cosðntÞ þ snðrÞ sinðntÞ�; ð3Þ

where the vector r describes the large-scale slow evolution,
ṙ≡ v ¼ P∞

m¼1 v
ðmÞðrÞ with vðmÞ ¼ OðvmÞ. The method [7]

has been originally developed for the nonlinear oscillation
theory and its characteristic feature is that the oscillation
amplitude itself is taken as a slow variable. In the case of
nonquasiperiodic motion at hand a natural choice of the
slow variable is the path along the smeared trajectory rðtÞ.
Then the total time derivative splits into the slow and fast
components as follows d=dt ¼ v · ∂r þ ∂t. Substituting
Eq. (3) into Eq. (2) and reexpanding in the Fourier
harmonics one can find the coefficients cnðrÞ and snðrÞ
order by order in v2. The zero harmonic then defines the
equation of motion for the slow evolution of the form
̈rþF effðr; vÞ ¼ 0. At Oðv2Þ we get the well known
leading order expression

F eff ¼ gþ 1

2
fi∂if : ð4Þ

The new next-to-leading Oðv4Þ result reads

F eff ¼ gþ 1

2
fi∂if −

3

2
vivjð∂i∂jfkÞ∂kf þ

1

4
fifj∂i∂jg

þ
�
3

2
gið∂ifkÞ þ

1

2
fið∂igkÞ þ

25

32
fið∂ifjÞð∂jfkÞ

þ 3

16
fifjð∂i∂jfkÞ

�
∂kf þ

1

32
fifjð∂ifkÞ∂j∂kf

þ 1

16
fifjfk∂i∂j∂kf ; ð5Þ

where the summation over repeating vector indices is
implied. So far we did not make any assumption about
the properties of the fields. If we assume the existence of
the corresponding potentials g ¼ ∂Vg and f ¼ ∂Vf,
Eqs. (4) and (5) follow from the effective Lagrangian

Leff ¼
vivj
2

�
δij −

3

2
∂if∂jf

�
− Veff ; ð6Þ

where the effective potential reads

Veff ¼Vgþ
f 2

4
þ1

4
fif∂igþ

1

64
fifjð∂if Þ∂jf þ

1

16
fifjf∂i∂jf :

ð7Þ
In the quadratic approximation in the oscillating field the
effective interaction has a distinctive form. The velocity
dependent term in Eq. (5) can be associated with the
geodesic equation for the affine connection Γk

ij ¼
− 3

2
ð∂i∂jf Þ∂kf corresponding to the three-dimensional met-

ric γij ¼ δij − 3
2
∂if∂jf . For an arbitrary field f with non-

vanishing second derivative this metric describes a non-
Euclidean space. In the region of vanishing charge density
∂f ¼ 0, which corresponds to a harmonic potential ∂2Vf ¼
0 relevant for most physical applications, the expression for
the corresponding Riemann curvature scalar takes a par-
ticulary simple form Rð3Þ ¼ 3

2
ð∂i∂jf Þ2 and is non-negative.

Moreover, in the quadratic approximation Eq. (6) coincides
with the post-Newtonian expansion of the relativistic
Lagrangian for a particle moving in a gravitational field
L ¼ −ðgμνẋμẋνÞ1=2, where xμ ¼ ðt; rÞ and the metric of the
3þ 1 dimensional pseudo-Riemann space is [23]

g00 ¼ 1þ f 2=2; g0i ¼ 0; gij ¼ −γij: ð8Þ

The corresponding scalar curvature reads

Rð4Þ ¼ ð∂if Þ2 −
3

2
ð∂i∂jf Þ2: ð9Þ

The above method readily generates the higher order
terms of the effective Lagrangian and is limited mainly
by the size of the resulting expressions. We present a
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relatively compactOðv6Þ Lagrangian in one dimension since many physical systems can be reduced or decomposed into the
one-dimensional problems. For a single generalized coordinate q we get the next-to-next-to-leading result

Leff ¼
q̇2

2

�
1 −

3

2
f02 − 10f0f00g − 10f02g0 − 3ff0g00 −

379

128
f04 −

691

64
ff02f00 −

3

128
f2f002 −

9

8
f2f0f000

�

þ q̇4

12

�
−5f002 þ 10f0f000

�
þ
�
gþ f2

4
þ f2g0

4
þ f2f02

64
þ f3f00

16
−
5

4
f02g2 −

5

4
ff03gþ f2g02

4
þ 9

256
f2f02g0

þ 3

16
f3f00g0 þ f3f0g00

64
þ f4g000

64
−
1435

4608
f2f04 þ 65

4608
f3f02f00 þ 41

1152
f4f002 þ f4f0f000

192
þ f5f0000

384

�
; ð10Þ

where dash stands for the derivative d=dq. Note that the
emergent Lorentz invariance of the effective action is
broken by the q̇4 term of Eq. (10) in agreement with the
general argument [24].
The convergence of the high frequency expansion

Eq. (10) depends on the system and for a given system
on the particular values of the adjustable parameters. It can
be roughly estimated by evaluating the expression for
v2=c2 with the characteristic values of the system param-
eters. At the same time the new high-order results make the
assessment of the convergence for a given system much
more reliable.
The result Eq. (10) has an interesting connection to the

theory of parametric resonance and stability of dynamical
systems, which is crucial for the further discussion of the
effective theory power counting. Namely, for gðqÞ ¼ δqþ
Oðq2Þ and fðqÞ ¼ ϵqþOðq2Þwith some parameters δ and
ϵ the system has an equilibrium point F ¼ 0 at q ¼ q̇ ¼ 0.
Then the equation ∂F ðq; q̇Þ=∂qjq¼q̇¼0 ¼ 0 controls the
change of its stability. This equation defines δ as a function
of ϵ, i.e., one of the stability curves in the parameter space
which play a crucial role in the analysis of chaotic and
regular behavior of dynamical systems. For ϵ ≪ 1 through
the next-to-next-to-leading approximation we get

δ ¼ −
ϵ2

2
þ 7

32
ϵ4 −

29

144
ϵ6 þOðϵ8Þ; ð11Þ

which is consistent with the scaling g ∼ f 2. Equation (11)
agrees with the result obtained within Floquet theory
analysis of the Mathieu equation [25], being a nontrivial
test of our analysis. This equation, in particular, defines the
corrections to the classical result on the stability of inverted
pendulum with the natural frequency

ffiffiffiffiffiffi
−δ

p
and the forced

oscillation amplitude ϵ [1]. Recently, the analysis of the
periodically driven pendulum with f; g ∝ sinðqÞ has been
performed to very high orders of perturbation theory [26].
Equation (10) agrees with the next-to-leading effective
Lagrangian presented there. For higher orders the com-
parison of the results is not straightforward since in [26] the
velocity dependent terms are eliminated from the equation
of motion by using the energy conservation. Hence, the

resulting effective potential depends on the total energy of
the system, while we use the standard definition of the
Lagrangian independent of the initial conditions.
Let us now consider the quantization of the effective

action. The existing theory of quantum systems in a rapidly
oscillating field is based on Floquet analysis of the
Schrödinger equation with the time-periodic Hamiltonian
H ¼ p̂2=2þ Vg þ Vf cos t, where p̂ ¼ −iℏ∂ is the
momentum operator and we keep the dependence on the
Planck constant ℏ ≠ 1 to separate the quantum corrections
from the classical action. The general idea of the method is
to construct within the high-frequency expansion a unitary
operator Û such that the effective Hamiltonian Heff ¼
Û†HÛ − iℏÛ†

∂tÛ is time independent and determines the
quasienergy spectrum, i.e., the slow evolution of the
quantum states. The particular realizations of this program
may be different. However, in this framework the pertur-
bative calculations quickly become tedious as the order of
approximation increases. At the same time the multiscale
problems are common to the quantum field theory, where
very efficient methods based on the scale separation are
elaborated and optimized for high-order calculations. As it
was pointed out, the high-frequency expansion is similar to
the nonrelativistic expansion and we suggest to realize it in
the same way as the Dirac equation in an external field is
expanded in inverse powers of the speed of light [27]. Let
us consider a Green function of the original time-dependent
Schrödinger equation G ¼ ðiℏ∂t −Hþ iεÞ−1 and its
Fourier transform G̃ðpi; pf;Ei; EfÞ, which depends on the
initial and final momentum and energy variables. In general
the initial and final energy may differ due to the time
dependence of the Hamiltonian. We, however, are interested
in the low-energy behavior of the Green function with the
kinematical constraints [28] p2i;f; Ei;f ≪ ℏω. In this case the
periodic character of the time dependence implies the energy
conservationEi ¼ Ef ≡ E. Expanding theGreen function in
powers of the external fields we get a series

G̃ ¼ G̃0 þ G̃0ṼgG̃0 þ G̃0ṼfG̃0ṼfG̃0 þ…; ð12Þ
where G̃0ðp; EÞ ¼ ðE − p2=2þ iεÞ−1 is the free particle
propagator and Ṽg (Ṽf) is the Fourier transform of Vg
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(Vf cosωt). By using the standard diagrammatic rules for the
particle propagators, external fields and the interaction
vertices defined by the full theory Lagrangian, this expansion
can be represented by the Feynman diagrams in Fig. 1. Note
that the contribution with a single insertion of the oscillating
field is forbidden by the “energy scale” conservation (for a
single-harmonic oscillating field this is true for any odd
power of f ).At the same time in the effective theory theGreen
function G ¼ ðiℏ∂t −Heff þ iεÞ−1 has the expansion

G̃ ¼ G̃0 þ G̃0δHeff G̃0 þ…; ð13Þ
whereHeff ¼ p̂2=2þ δHeff . Bymatching Eqs. (12) and (13)
we get δHeff order-by-order in 1=ω2. The second term in
Eq. (12), i.e., the diagram with a single insertion of the static
field in Fig. 1 defines the trivial Vg contribution to the
effectiveHamiltonian.Let us nowconsider the diagramswith
the double insertion of the oscillating field. The intermediate
state propagator carrying the momentum p and energy Eþ
ℏω is far off-shell and can be expanded in a series

G̃0ðp; Eþ ℏωÞ ¼ 1

ℏω
−
E − p2=2
ðℏωÞ2 þ � � � ; ð14Þ

which gives rise to a local effective vertex, Fig. 2. This
seagull vertex is well known in nonrelativistic QED where it
is generated by a far off-shell positron in the intermediate
state rather than the large timelike momentum transfer from
the oscillating field. The odd powers inω cancel between the
planar and nonplanar diagrams and by the standard tools we
readily get the leadingOð1=ω2Þ contribution to the effective
vertex in the coordinate space

hVfðp̂2=2 − EÞVfi
2ðℏωÞ2 ¼ f 2

4ω2
; ð15Þ

where the matrix element is taken between on-shell states
with p2=2 ¼ E. For ω ¼ 1 we recover the leading contribu-
tion to the classical effective potential Eq. (7).AtOð1=ω4Þ the
contribution of the operatorVfðp̂2=2 − EÞ3Vf to the effective
vertex can be computed in the same way with the result

1

ð2ωÞ4 ½3ðfp̂ip̂j; ∂if∂jfgþ þ 2p̂i∂if∂jf p̂jÞ þ ℏ2ð∂i∂jf Þ2�:

ð16Þ
The terms omitted in Eq. (12) give rise to the effective vertices
with the higher powers of the external fields, which alongwith
Eqs. (15) and (16) define the HFET Feynman rules. However,
in thegivenorder thesevertices reduce to the classical effective
potential as in Eq. (15), i.e., require no additional calculation.
Setting ω ¼ 1 and switching back to the velocity power
counting for the effective Hamiltonian trough Oðv4Þ we get

Heff ¼
1

8
½fp̂ip̂j; γijgþ þ 2p̂iγ

ijp̂j� þ
ℏ2

16
ð∂i∂jf Þ2 þ Veff ;

ð17Þ
where γij ¼ δij þ 3

2
∂if∂jf þOðv4Þ is the inverse of the

metric tensor γij and Veff is given by Eq. (7). In one spatial
dimension the first two terms of Eq. (17) agree with [10].
If we assume ∂f ¼ 0, Eq. (17) simplifies to Heff ¼

p̂iγ
ijp̂j=2 − ðℏ2=12ÞRð3Þ þ Veff . It has an interesting prop-

erty that the kinetic energy is not given by the covariant
Laplace operator as required by the geometry of a genuine
Riemann space. Thus, while classically the emergent nature
of the metric is revealed by the Oðv4Þ Lorentz symmetry
violating terms, at quantum level it is manifested already in
the leading kinetic energy operator sensitive to the short-
distance properties of the underlying fundamental theory.
The convergence of the quantummechanical perturbation

theory for the effective Hamiltonian Eq. (17) should be
discussed. The high-frequency expansion is now the expan-
sion in the expectation value of the velocity square operator.
Thus, for the states of a high quantum number the quasi-
classical approximation gives the same expansion parameter
as for the classical system. However, for a low quantum
number the quasiclassical approximation is not applicable
and we need an alternative estimate. The low energy level
splitting near a minimum of the unperturbedOðv2Þ effective
potential scales as

ffiffiffiffi
g0

p
∼ ϵ,while the expectationvalue of the

Oðv4Þ perturbation scales as ϵ2. Thus, the effective expan-
sion parameter given by the corresponding ratio is ϵ ≪ 1.
Note that the convergence may be affected if the leading
order splitting accidently vanishes for some values of the
parameters, e.g., near the bifurcation point.
The result Eq. (17) can be generalized to an arbitrary

number of harmonics in the periodically oscillating field.
The calculation of the classical action in this case is
straightforward though the result is less elegant, and the
quantum corrections are given by the sum of Eq. (16)
over the harmonics weighted by the (square of) the

FIG. 1. The Feynman diagrams representing the expansion of
the Green function Eq. (12). The double (single) line represents
the exact (free) particle propagator while the dashed (wavy) line
corresponds to the static (oscillating) external field.

FIG. 2. The effective local vertex resulting from the expansion
Eq. (14) of the off-shell propagator in Fig. 1.
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corresponding Fourier coefficients. The spin structure
and a different dispersion law of the quasiparticles in
Floquet materials can be easily incorporated in the
Feynman rules of HFET. The quantization of the theory
through Oðv6Þ does not pose a technical challenge in the
HFET framework as well.
Let us now compare our approach to the high-frequency

expansion based on Floquet theory. For the problem dis-
cussed in this Letter the effective Oð1=ω4Þ Hamiltonian in
one spatial dimension has been derived for the first time in
[10] (a formal general expression in a different representation
can be found in [16]). This analysis relies on a formal power
counting in 1=ω, with both g and f treated as Oð1=ω2Þ
quantities. Hence, the result does not account for the terms
with the fourth power of f present in Eqs. (7) and (17).
However, this power counting does not apply to the most
interesting physical case of dynamical stabilization realized,
e.g., in the Paul traps, where the oscillating field results in a
qualitative change of the system behavior. The latter requires
g ∼ f 2 scaling, cf. Eq. (11). In general, the Floquet theory
calculations in this order are already quite tedious even in one
dimension and without the more challenging Oðf 4Þ terms,
while the quantization of the Hamiltonian within HFET
requires only a “one-line” derivation of Eq. (16).
To summarize, in thisworkwe have presented a number of

results connecting dynamical systems, general relativity, and
quantum theory. We have elaborated an asymptotic method
to systematically construct the effective action for particles
moving in a rapidly oscillating field. The effect of the
oscillating field on the large-scale dynamics models the
pseudo-Riemann space of general relativity in the post-
Newtonian limit, with the curvature determined by the field
spatial distribution and the effective value of the speed of
light determined by the oscillation frequency. While the
appearance of emergent gravity in condensedmatter systems
has already been predicted [29,30] and observed experimen-
tally (see, e.g., [31]) for quasiparticle propagation, the rapidly
oscillating field creates the gravitylike effect for the classical
charged particles. Guided by the analogy with the non-
relativistic expansion of QED, we have quantized the
effective action and developed the high-frequency effective
theory, apparently the most powerful analytic tool for the
perturbative analysis of the periodically driven systems. It
can be used in a wide range of physical applications from the
high-precision analysis and design of the charged particle
traps to the Floquet engineering of quantum materials.
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