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We develop a relativistic perturbation theory for scalar clouds around rotating black holes. We first
introduce a relativistic product and corresponding orthogonality relation between modes, extending a
recent result for gravitational perturbations. We then derive the analog of time-dependent perturbation
theory in quantum mechanics, and apply it to calculate self-gravitational frequency shifts. This approach
supersedes the nonrelativistic “gravitational atom” approximation, brings close agreement with numerical
relativity, and has practical applications for gravitational-wave astronomy.
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Introduction.—Fundamental bosonic fields are ubiquitous
in extensions of general relativity and the standard model.
In black hole (BH) spacetimes, perturbations by massless
bosonic fields are well known to be described by a series of
damped sinusoids called quasinormal modes (QNMs) [1,2].
Unlike normal modes, which exist for conservative systems
and have purely real spectrum, QNMs appear in dissipative
systems and have complex frequencies ω ¼ ωR þ iωI, with
the imaginary part setting their decay time. For BHs,
dissipation arises due to radiation of the field through the
horizon and away to infinity.
Massive fields around BHs admit an additional class

of solutions known as quasibound states (QBSs). Whereas
QNMs are radiative solutions, with frequency jωj > μ,
where μ is the field mass, QBSs are spatially confined by
the Yukawa suppression and have jωj < μ. Thus, QBSs
do not radiate at infinity, although they still dissipate
through the horizon. For spinning BHs, these modes
can also undergo superradiant amplification, leading to
the well-known superradiant instability (see, e.g., [3]).
For astrophysical BHs, this process is efficient for
μ ≈ 10−20 − 10−10 eV, leading to the formation of a macro-
scopic boson cloud and the spin-down of the BH. This
phenomenon translates into potentially observable signa-
tures, such as gaps in the BH spin-mass (Regge) plane,
gravitational-wave emission from the condensate (when
the bosonic field is real), or signatures in binary systems
[4–18]. Superradiant instabilities, therefore, represent a
powerful probe of ultralight bosons beyond the standard
model, such as axions or dark photons.
Given these (and other) prospects for deviations from

linear mode evolution, there is considerable interest in
calculating nonlinear perturbative effects involving QBSs
or QNMs [5,19–22]. However, due to the non-Hermiticity

of the system, the spectral theorem does not guarantee the
orthogonality or completeness of these modes—which
moreover often diverge at the BH horizon or infinity—
so it is not clear a priori how to incorporate them into a
perturbative framework.
For QBSs, the problem can be simplified using the

“gravitational atom” or “hydrogenic” approximation. Indeed,
at leading order in the gravitational coupling α ¼ μM, where
M is the BH mass, and beyond the field’s Compton length,
r ≫ μ−1, QBSs reduce to eigenfunctions of the hydrogen
atom Hamiltonian. In this limit, the ingoing condition at
the BH horizon is replaced by a regularity condition at the
origin [12,23–25]. Thus, a “hydrogenic” inner product
ð·; ·Þhyd can be defined, in analogy to quantum mechanics,
andmode orthogonality is guaranteed by the spectral theorem
in the absence of dissipative boundaries. (The same is not
true for QNMs, which still radiate to infinity).
The hydrogenic approximation (and its relativistic

corrections [12,26]) has been widely used to compute
various perturbative corrections to the linear problem
[12,18,19,27–29]. For instance, to leading order, a potential
term δV arising from, e.g., a binary companion, or a quartic
self-interaction, gives rise to level mixing through the
matrix element ðΨnlm; δVΨn0l0m0 Þhyd [12]. The self-gravity
of the state also gives rise to a shift in the mode frequency,
proportional to the matrix element ðΨnlm; δVΨnlmÞhyd
[4,27]. However, this approximation has two drawbacks:
it breaks down for higher values of α, and it does not take
into account the dissipative nature of the problem. To
accurately model the phenomenology of massive fields
around black holes, we require a relativistic perturbative
framework, based on an appropriate notion of orthogonality
between the modes.
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In this Letter, we introduce a bilinear form for massive
scalar fields in Kerr to take the place of the hydrogenic
inner product in fully relativistic calculations. Under this
bilinear form, which is a natural extension of the gravita-
tional bilinear form of Ref. [30], Kerr QNMs and QBSs
are truly orthogonal—for all values of α. The product
reduces to the hydrogenic inner product in the limit α → 0,
but it is also applicable in the relativistic regime, and forms
the basis for a relativistic perturbation theory in terms
of modes.
Using the relativistic product, we derive the analog of

time-dependent perturbation theory in quantum mechanics
for the scalar field. As an application, we calculate the
leading relativistic frequency shift due to the self-gravity of
a superradiant mode, and we find a significant improve-
ment over the hydrogenic approximation when comparing
to previously published numerical-relativity results [9],
improving the agreement by a factor of 2.5 even at α ¼ 0.4.
Our product therefore opens a new path to accurate non-
linear mode calculations.
We use GN ¼ c ¼ ℏ ¼ 1 units throughout.
Bilinear form for massive scalars.—We first extend the

bilinear form of [30] to scalar massive perturbations of
Kerr and prove the orthogonality of scalar modes with both
quasinormal and quasibound asymptotic conditions.
The Kerr line element for a black hole of mass M and

spin parameter a is given by

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Marsin2θ
Σ

dtdϕ

þ Σ
Δ
dr2 þ Σdθ2 þ Λ

Σ
sin2θdϕ2; ð1Þ

in Boyer-Lindquist coordinates, where Δ¼ r2þa2−2Mr,
Σ ¼ r2 þ a2cos2θ, Λ ¼ ðr2 þ a2Þ2 − Δa2sin2θ. We denote
the event horizon (the greater root r� of Δ) by rþ and
define the tortoise coordinate, dr=dr� ¼ Δ=ðr2 þ a2Þ.
The Lagrangian density for the complex Klein-Gordon

equation on a Kerr background (which coincides with the
Teukolsky equation OΦ ¼ 0 for a spin s ¼ 0 complex
massive field [31]) reads

L ¼ −
ffiffiffiffiffiffi
−g

p ðgab∇aΦ�∇bΦþ μ2Φ�ΦÞ; ð2Þ
where μ is the mass. A product between two solutions
of the Klein-Gordon equation can be built as follows. Start
from a “base” product (related to the symplectic form),

ΠΣ½Φ1;Φ2� ¼
Z
Σ

ðΦ1∇aΦ2 −Φ2∇aΦ1ÞnadV; ð3Þ

where Σ is a time slice with unit normal na. One can easily
verify that, ifΦ1,Φ2 are solutions, the product is conserved
(i.e., independent of Σ) and that it isC linear in both entries,
or bilinear.

Reference [30] showed that one can build, from this base
product, an infinite number of conserved quantities by
inserting symmetry operators of the equation of motion.
In Kerr, one can make use of the symmetry operators
associated with the time-translation and ϕ rotation iso-
metries, Lt and Lϕ, as well as with the Killing tensor of the
spacetime. One can also use the symmetry operator
associated with the t–ϕ spacetime symmetry, J , whose
action on a scalar field simply takes t → −t and ϕ → −ϕ.
Note that the Teukolsky operator and the t–ϕ reflection
operator commute on s ¼ 0 Weyl scalars, OJ ¼ JO.
The product relevant for the orthogonality relation can

be built from the t–ϕ reflection operator [30]. For scalar
massive (or massless) perturbations with compact support it
is given by

⟪Φ1;Φ2⟫ ¼ ΠΣ½JΦ1;Φ2�: ð4Þ
In Boyer-Lindquist coordinates, the bilinear form reads

⟪Φ1;Φ2⟫ ¼
Z∞
rþ

dr
Z
S2

d2Ω
�
2Mra
Δ

ðJΦ1∂ϕΦ2 −Φ2∂ϕJΦ1Þ

þ Σ
Δ

�
r2 þ a2 þ 2Mra2

Σ
sin2θ

�

× ðJΦ1∂tΦ2 −Φ2∂tJΦ1Þ
�
; ð5Þ

where d2Ω ¼ sin θdθdϕ. In addition to being bilinear and
conserved, one can easily prove, in analogy to Ref. [30],
that (1) the bilinear form is symmetric, ⟪Φ1;Φ2⟫ ¼
⟪Φ2;Φ1⟫; and (2) the time-translation symmetry operator
is symmetric with respect to the bilinear form,
⟪LtΦ1;Φ2⟫ ¼ ⟪Φ1;LtΦ2⟫.
Extension to mode solutions.—Quasinormal and quasi-

bound states are mode solutions of the Teukolsky equation,
Φlmω ¼ e−iωtþimϕRlmωðrÞSlmωðθÞ, where Slmω are the
s ¼ 0 spin-weighted spheroidal harmonics with angular
numbers l, m [31] and the radial solution can be defined in
terms of an asymptotic series involving a three-term
recursion relation [32,33]. The modes are required to be
regular at the horizon, Φ ∼ e−ikHr� as r� → −∞, where
kH ¼ ω −mΩH and ΩH is the angular frequency of the
outer horizon ΩH ¼ a=ð2MrþÞ. At infinity, the two fam-
ilies satisfy

Φ ∼ r−1eikr� ; r� → ∞ ðQNMsÞ; ð6Þ
Φ ∼ r−1e−ikr� ; r� → ∞ ðQBSsÞ; ð7Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

p
.

Because the radial solutions have noncompact support,
and for ωI < 0 actually diverge as r� → −∞ (QNMs and
QBSs) and as r� → þ∞ (QNMs), we must find a suitable,
finite extension of the bilinear form (4). In analogy with
Ref. [30], we extend the definition of the bilinear form to a
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complex radial integration contour C, such that the radial
integral is absolutely convergent. We define the bilinear
form over a pair of QNMs or QBSs with complex
frequencies ω1, ω2 by integrating over a complex r�
contour such that

arg r� þ argðω1 þ ω2Þ ¼ −π=2; r� → −∞; ð8Þ

and running along the real axis elsewhere. If the product is
over one or two QNMs, we also take

arg r� þ argð�k1 � k2Þ ¼ π=2; r� → ∞; ð9Þ

where the plus (minus) sign holds for QNMs (QBSs).
Explicitly, the bilinear form on modes reads

⟪Φ1;Φ2⟫modes ¼ iδm1m2
e−iðω1−ω2Þt

Z
C

dr
K
Δ
R1R2; ð10Þ

where

KðrÞ ¼ α12ðr2 þ a2Þ2ðω2 þ ω1Þ − 2Mraα12ðm1 þm2Þ
− γ12ðω2 þ ω1Þa2ΔðrÞ; ð11Þ

α12 ¼ 2π

Zπ
0

dθ sin θS1ðθÞS2ðθÞ; ð12Þ

γ12 ¼ 2π

Zπ
0

dθ sin3θS1ðθÞS2ðθÞ: ð13Þ

Note that, as demonstrated for Kerr QNMs in Ref. [30],
this product can be used to project initial data onto
modes, resulting in the known mode excitation coefficients
[34–36]. In the hydrogenic limit, this reduces to the familiar
inner product on the (real) hydrogenic mode functions,

⟪Φ1;Φ2⟫ → δm1m2

Z∞
0

dr r2R1R2ðrÞ
Zπ
0

dθ sin θS1S2ðθÞ

≡ ðΦ1;Φ2Þhyd; ð14Þ

up to an overall factor. In this limit, no regularization is
required.
For QBSs in Schwarzschild, it is convenient to adopt

an alternative regularization involving counterterm sub-
traction [37]. This is particularly useful when mode
solutions are only known numerically and thus cannot
be easily continued into the complex r� plane. For
Schwarzschild, the integrals over r and θ factorize, and
the latter gives rise to the usual orthogonality relation for
spherical harmonics. The radial integration can then be
regularized by subtracting suitable counterterms,

⟪Φ1;Φ2⟫Schwarzschild QBS

¼ iδm1m2
δl1l2ðω1 þ ω2Þ lim

r̄�→−∞

�Z
∞

r̄�
dr� X1ðr0�ÞX2ðr0�Þ

þ i
ω1 þ ω2

X1ðr̄�ÞX2ðr̄�Þ þOðr−1� Þ
�
; ð15Þ

where XðrÞ ¼ rRðrÞ. For long-lived states (MjωIj ≪ 1),
only the leading counterterm is needed to make the
product finite. Further details of the counterterm subtrac-
tion method, including a discussion of higher-order coun-
terterms, are provided in the Supplemental Material [38].
Note that this method works for QBSs, since regularizing
the QNM divergence at infinity would require an infinite
series of subtractions.
Mode orthogonality.—With the finite bilinear form in

hand, from 2 we obtain

ðω1 − ω2Þ⟪Φ1;Φ2⟫ ¼ 0 ð16Þ

for a pair of QNMs or QBSs with frequencies ω1, ω2. Then,
either ⟪Φ1;Φ2⟫ ¼ 0 or ω1 ¼ ω2, proving that QNMs and

FIG. 1. The relativistic product between two l ¼ m ¼ 1 QBSs in Schwarzschild, as a function of the counterterm regularization
point ϵ ¼ r̄=rþ − 1, for different scalar field masses. The red curve is a power-law fit, showing convergence to zero. In the top-left
corner, we show the absolute value of the radial mode functions around the BH. Modes are normalized to have ⟪n; n⟫ ¼ 1 in the
regularization limit.
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QBSs are orthogonal. In particular, modes of the two
families are also mutually orthogonal.
We now numerically compute the product (15) between

two QBSs in Schwarzschild with different radial numbers
n [39]. We do so in the hydrogenic (α ¼ Mμ ≪ 1) and
relativistic (α ≃ 1) regimes. To compute the quasibound
frequencies and radial solutions, we use the Leaver
continued fraction method [32]. We perform product
integrals (15) numerically using Mathematica.
Figure 1 shows the product between the l ¼ m ¼ 1

fundamental mode and the first overtone as a function of
the integral regulator ϵ ¼ r̄=rþ − 1. Different panels span the
hydrogenic regime and the relativistic regime. The product
between the two modes goes to zero as a power law as ϵ → 0
in all cases, confirming numerically the orthogonality to a
precision of order 10−7. For higher values of α, we are able to
probe the integral for smaller r due to better convergence
resulting from milder divergences at the horizon. We obtain
similar results also for higher radial overtones.
Relativistic perturbation theory.—We now describe

our relativistic approach to compute transitions between
modes due to a perturbation. To emphasize the similarity
to ordinary Schrödinger perturbation theory in quantum
mechanics, we work in the Hamiltonian formulation,
writing the metric in Arnowitt-Deser-Misner form gab ¼
−N−2ðta − NaÞðtb − NbÞ þ hab (see Appendix E of [40]),
assumed to be some perturbation of Kerr. Starting from
the Lagrangian (2) we introduce the momentum Π ¼
N−1

ffiffiffi
h

p ðta − NaÞ∇aΦ and the Hamiltonian, leading to
equations in first order form,

�
Φ̇
Π̇

�
≡ Lt

�Φ
Π

�
¼ H

�Φ
Π

�
; ð17Þ

where

H ≡
 

NaDa N=
ffiffiffi
h

p
ffiffiffi
h

p ðDaNDa − Nμ2Þ DaNa

!
: ð18Þ

In phase-space notation, the relativistic product
takes the form ⟪ðΦ1;Π1ÞT; ðΦ2;Π2ÞT⟫ ¼ RCðΦ1∘JΠ2 þ
Π1∘JΦ2Þd3x.
For a general perturbation, H is time-dependent. We

make an ansatz for the column vector F ¼ ðΦ;ΠÞT asso-
ciated with a solution in terms of a superposition of modes
with time-dependent amplitudes [41],

FðtÞ ¼
X
q

cqðtÞF0qðtÞ; ð19Þ

where F0q are the quasibound and quasinormal modes
of the unperturbed problem with Hamiltonian H0,
i.e., H0F0q ≡ LtF0q ¼ −iωqF0q, so that F0qðtÞ has har-
monic e−iωqt time dependence.

We decompose the Hamiltonian as H ¼ H0 þ δH,
where the subscript 0 denotes quantities associated with
the Klein-Gordon equation in the Kerr metric. The scheme
rests on the facts that ⟪F0q; F0q0⟫ ¼ δqq0 and that H0 is
symmetric [42] relative to our relativistic product on two-
vector states Fi. A standard calculation mirroring quantum
mechanics then gives the perturbation series for the time-
dependent excitation coefficients,

ċn⟪Φn;Φn⟫ ¼
X
q

cq⟪F0n; δHðtÞF0q⟫: ð20Þ

If δH is approximately t-independent, we have an
(approximate) perturbed quasinormal or quasibound mode
F ¼ F0 þ δF, defined by the “eigenvalue equation” HF ¼
−iðω0 þ δωÞF and appropriate boundary conditions, with a
frequency shift δω. Taking an inner product ⟪F0; ·⟫ with
the unperturbed QNM or QBS and going through exactly
the same steps as in ordinary time-independent quantum
mechanics perturbation theory immediately yields the usual
formula,

−iδω ¼ ⟪F0; δHF0⟫

⟪F0; F0⟫
; ð21Þ

at first perturbation order. Substituting this back into the
eigenvalue equation and taking an inner product ⟪F0q; ·⟫
with all unperturbed QNM or QBS F0q orthogonal to F0

then gives

δF0 ¼
X
q

⟪F0q; δHF0⟫

−i⟪F0q; F0q⟫ðω0 − ω0qÞ
F0q; ð22Þ

using (20) at first order. In the Supplemental Material [38],
we also derive the perturbation equations for the excitation
coefficients in the second-order formalism.
Frequency shift due to self-gravity.—We apply our

relativistic perturbative framework to calculate the fre-
quency shift δωn of an (unstable) mode Φn close to the
superradiant bound in Kerr due to its self-gravity. We
assume that the squared amplitude A2 of the mode and the
rotation parameter a=M are both relatively small and
neglect effects that are not linear in these quantities. We
show in the Supplemental Material [38] that, under these
assumptions, the perturbed metric δgab ¼ gab − gab0 can be
written in the form δgab ≈ −δ½N−2ðta − NaÞðtb − NbÞ�
where δNa ≈ Na

0δN=N0. Following [19], we therefore take
a semi-Newtonian, approximation for the gravitational
potential sourced by a mode. With this, the perturbed
Hamiltonian of the scalar field is δH ≈ δVH0, where
δV ¼ δN=N0 is given approximately by

δVðrÞ ≈ −μ2
�
1

r

Z
r

rþ
d3r0jΦnj2 þ

Z
∞

r
d3r0

jΦnj2
r0

�
; ð23Þ
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where the integration is carried out over flat space and we
have taken the leading order (spherical) multipole.
To estimate the correction δωn to the mode frequency ωn

in Kerr we use (21), with δH ≈ δVH0 and H0ðΦn;ΠnÞT ¼
−iωnðΦn;ΠnÞT. Reverting to 1-component form, we get

δωn

ωn
≈
⟪Φn; δVΦn⟫

⟪Φn;Φn⟫
: ð24Þ

This approach is similar in spirit to that outlined in
Refs. [22,43–45]. In the nonrelativistic limit, this formula
reduces to that found in Refs. [19,27]. Note that super-
radiantly unstable QBSs, which have ωI > 0 and decay at
infinity, have no divergence at the horizon and therefore
require no regularization of the product.
For completeness, we also write the equation for the time

evolution of the excitation coefficients, better suited to
when the perturbation δH ≈ δVH0 is time-dependent,

ċn⟪Φn;Φn⟫ ¼ −i
X
q

ωq⟪Φn; δVΦq⟫: ð25Þ

We now calculate numerically the frequency shift (24) for
superradiant modes with l ¼ m ¼ 1. For a given coupling
α, we set the BH spin to be close to the superradiant bound
mΩH ≳ ωR, the same setup as [19]. For this application, we
use the Black Hole Perturbation Toolkit to compute the
modes’ spin-weighted spheroidal harmonics [46].
In Fig. 2, we compare for several α our perturbative

calculation of δω=Mcloud against the numerical-relativity
estimate of ∂ω=∂Mcloud from [19]. We find excellent agree-
ment, including significant improvement over the hydro-
genic approximation, which begins to fail around α ≃ 0.3.
For α ¼ 0.4, the error is reduced from 28% to 11%. The
remaining disagreement is likely due to the approximation

that δω is linear in the cloud mass (∂ω=∂Mcloud ≃
δω=Mcloud), to our semi-Newtonian approximation for the
perturbed equation, and to the monopolar approximation of
the Newtonian potential.
In the Supplemental Material [38], we include another

example, calculating relativistic matrix elements of tidal
perturbers [12], and again find Oð10%Þ corrections to the
hydrogenic approximation. This example is relevant for
gravitational-wave signals from extreme or intermediate
mass-ratio binaries (see also [22]).
Conclusions.—In this Letter, we introduced a bilinear

form for massive scalar-field perturbations of Kerr and
showed that modes are orthogonal with respect to this
product. Our bilinear form replaces the standard quantum
mechanics inner product—often employed in a hydrogenic
approximation—making no assumption on the strength
of the gravitational coupling α. We also introduced an
approach to compute perturbative corrections to mode
evolution due to a perturbation, and applied this to recover
frequency shifts due to the self-gravity of a superradiant
state. For large values of α, accurate results were previously
only obtainable using numerical relativity.
Our bilinear form and perturbative framework have both

conceptual and practical importance. Other applications
could be to compute corrections due to self-interaction
terms such as quartic potentials [27], or in the sine-Klein-
Gordon equation for the QCD axion [47]. In future work,
we also hope to explore transitions between quasinormal
and quasibound modes, and to rigorously derive angular
selection rules for massive perturbations in Kerr using the
bilinear form.
Another natural extension would be to generalize our

product to massive spin-1 fields. This scenario presents a
number of difficulties as the Proca equation is not separable
using the standard Teukolsky formalism. Nevertheless, an
ansatz yielding separability of the Proca equation in Kerr
spacetime was recently discovered [48,49], and could allow
for a generalization of the bilinear form.
Finally, in the context of BH binaries, the gravitational

product [30] could be used with the second-order
Teukolsky equation [50,51] to estimate nonlinear correc-
tions to the BH ringdown. This could be used to inform
waveform development and address recent questions on
nonlinear effects during the ringdown [20,21,52–54]. We
hope to report on these interesting problems in the future.

The authors would like to thank T. May, N. Siemonsen
and W. East for sharing the numerical-relativity data for
Fig. 2. The authors would also like to thank S. Dolan
for suggesting to explore the orthogonality of quasibound
states at the 2022 Capra Meeting, and R. Brito, V. Cardoso,
F. Duque, T. Spieksma, G. M. Tomaselli, and S. Völkel for
their helpful comments during the preparation of the
manuscript. This work makes use of the Black Hole
Perturbation Toolkit.

FIG. 2. Frequency shift due to the self-gravity of a superradiant
mode in Kerr (l ¼ m ¼ 1, n ¼ 0). We compare our result based
on the relativistic product with the hydrogenic approximation,
and with the fully relativistic (numerical) frequency shift from
Ref. [19]. For the analytic results, we plot δω=Mcloud, which
should be a good approximation of the derivative for small cloud
masses.
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