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The parity-time (PT ) symmetry of a non-Hermitian Hamiltonian leads to real (complex) energy
spectrum when the non-Hermiticity is below (above) a threshold. Recently, it has been demonstrated that
the non-Hermitian skin effect generates a new type of PT symmetry, dubbed the non-Bloch PT symmetry,
featuring unique properties such as high sensitivity to the boundary condition. Despite its relevance to a
wide range of non-Hermitian lattice systems, a general theory is still lacking for this generic phenomenon
even in one spatial dimension. Here, we uncover the geometric mechanism of non-Bloch PT symmetry
and its breaking. We find that non-Bloch PT symmetry breaking occurs by the formation of cusps in the
generalized Brillouin zone (GBZ). Based on this geometric understanding, we propose an exact formula
that efficiently determines the breaking threshold. Moreover, we predict a new type of spectral singularities
associated with the symmetry breaking, dubbed non-Bloch van Hove singularity, whose physical
mechanism fundamentally differs from their Hermitian counterparts. This singularity is experimentally
observable in linear responses.
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Introduction.—Parity-time (PT ) symmetry is one of the
central concepts in non-Hermitian physics [1–5]. A PT -
symmetric Hamiltonian enjoys a real-valued spectrum
when the non-Hermiticity is below a certain threshold.
Above this threshold, the symmetry-protected reality
breaks down. This real-to-complex transition has been
associated with the exceptional points (EP) where a pair
of eigenstates coalesce [6–10]. The unique properties of
PT symmetry and EP have inspired numerous explorations
on various experimental platforms [11–19].
Recently, the non-Hermitian skin effect (NHSE) has

been realized as a general mechanism for achieving PT
symmetry and therefore real spectrums [20–26]. NHSE
refers to the phenomenon that the eigenstates of non-
Hermitian systems are squeezed to the boundary under
open boundary condition (OBC), which causes strong
sensitivity of the spectrum to boundary conditions [27–38].
Its quantitative description requires a non-Bloch band
theory that generalizes the concept of Brillouin zone
[27,39–45]. In the presence of NHSE, it is possible to
have an entirely real spectrum under OBC, in sharp contrast
to that under periodic boundary condition (PBC), which is
always complex [46,47]. That the real spectrum can only be
maintained under OBC is known as non-Bloch PT
symmetry [20–22], which is crucial in the experimental
detection of non-Bloch band topology [33,48]. Recent
experiments have confirmed the non-Bloch PT symmetry
breaking transitions, i.e., the real-to-complex transitions of
the OBC spectrum [22,23].
The PT symmetry breaking in Bloch bands originates

exclusively from the Bloch Hamiltonian being defective at

certain wave vectors [11,14,49–51]. The non-Bloch PT
symmetry breaking, however, must have an entirely differ-
ent mechanism. One of the clear evidences is that the non-
Bloch PT breaking can occur in single-band systems. In
contrast, the Bloch PT breaking is strictly prohibited in a
single-band system because its Bloch Hamiltonian, as a
complex number, can never be defective. It is the purpose
of this paper to unveil the mechanism of non-Bloch PT
breaking.
We uncover a geometric origin of non-Bloch PT

symmetry breaking and formulate a coherent theory that
enables efficient computation of the PT breaking threshold
in one dimension (1D). Specifically, the geometric object
we will focus on is the generalized Brillouin zone (GBZ),
which can be determined through 1D non-Bloch band
theory [27,39]. Because of its noncircular shape, the GBZ
can possibly have intriguing cusp singularities [39,52], yet
their physical significance remains elusive. Our work starts
from the observation that these singularities underlie the
non-Bloch PT symmetry breaking. Our main results
include (i) The cusps on a GBZ are responsible for the
non-Bloch PT symmetry breaking. (ii) A concise formula
is found for thePT breaking threshold that does not require
calculating the energy spectrum or GBZ. (iii) The transition
point of non-Bloch PT symmetry breaking represents a
new type of divergence in the density of states (DOS),
which we call the non-Bloch van Hove singularity.
Geometric origin.—Non-Bloch PT symmetry breaking

refers to the real-to-complex transition of the OBC spec-
trum in non-Hermitian bands. We first attempt to gain some
intuitions about this transition from a concrete example.
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A simple model that includes all the ingredients of our
interest has the Bloch Hamiltonian:

HðkÞ¼2t1coskþ2t2cos2kþ2t3cos3kþ2iγ sink: ð1Þ

Its real-space hopping is illustrated in Fig. 1(a). The real-
space Hamiltonian H has real matrix elements and hence
obeys the (generalized) PT symmetry KHK ¼ H, where
K is the complex conjugate operator [2]. The (generalized)
PT symmetry is essential for obtaining a robust non-Bloch

PT -exact phase (i.e., a parameter region with nonzero
measure where OBC spectrums are purely real).
The standard approach to obtain the OBC spectrum

of the model in Eq. (1) is to use the non-Bloch band
theory, which takes into account the NHSE [27,39]. In this
approach, the Bloch Hamiltonian is generalized to the
complex plane HðβÞ≡HðkÞjeik→β, dubbed non-Bloch
Hamiltonian. The OBC spectrum is given by HðβÞ, where
β is taken from the GBZ, rather than the Brillouin zone
(BZ). The GBZ is a curve determined by the GBZ equation
jβiðEÞj ¼ jβiþ1ðEÞj, where βiðEÞ and βiþ1ðEÞ are the
middle two among all roots of the characteristic function
fðE; βÞ ¼ det½HðβÞ − E1� ¼ 0 sorted by their moduli [53].
Thus, the decay factor (also known as the inverse skin
depth) of a non-Hermitian skin mode is given by ln jβj
with β∈GBZ. Numerically, an efficient approach to solve
the GBZ is to first obtain the so-called auxiliary GBZ
(aGBZ) [42], which comprises a bunch of curves satisfying
jβiðEÞj ¼ jβjðEÞj for any i ≠ j. Then the GBZ comes as a
subset of the aGBZ by further choosing the indices of these
roots with equal moduli.
In Fig. 1, we demonstrate a paradigmatic non-Bloch PT

transition within the model Eq. (1). With increasing γ, the
OBC spectrum changes from entirely real to partially
complex. Moreover, the continuity of GBZ changes
saliently before and after the transition point. The GBZ
is completely smooth in the PT -exact phase [Fig. 1(b)], but
becomes singular at several cusps when PT symmetry is
broken [Fig. 1(f)]. Remarkably, the cusps appear exactly at
the transition point [Fig. 1(d)].
At the same time, we mark saddle points that satisfy

fðE; βÞ ¼ ∂βfðE; βÞ ¼ 0 [20] by the red points in Fig. 1.
Tracking their motions can help us understand the gen-
eration of GBZ cusps. A saddle point must reside on the
aGBZ, but it may or may not be on the GBZ [42,54]. In
Fig. 1(b), S4 and S5 reside on the aGBZ but not on the GBZ.
However, as indicated in Figs. 1(d) and 1(f), they are
merged into the GBZ at the transition point. For this to be
possible, at the transition point the GBZ intersects with
multiple branches of the aGBZ [Fig. 1(d)], which results
in S4 and S5 being saddle points and GBZ cusps
simultaneously.
To interpret the above observations, we parametrize the

GBZ as β ¼ jβðθÞjeiθ. It suffices that a parametrization
exists in a neighborhood of a given β. The derivative of
the energy dispersion EðθÞ ¼ HðjβðθÞjeiθÞ with respect to
angle θ is

dEðθÞ
dθ

¼ ∂HðβÞ
∂β

�
∂jβðθÞj
∂θ

eiθ þ iβ
�
: ð2Þ

The cusps correspond to discontinuous points of
∂jβðθÞj=∂θ, and thus dEðθÞ=dθ is also discontinuous at
the cusp unless ∂βHðβÞ ¼ 0. It is this discontinuity that
accounts for the multiple branches of the spectrum on the

··· ···

FIG. 1. (a) The real-space hopping in the model of Eq. (1). (b)–
(g) The transition of the GBZ and the energy spectrum in a
representative breaking process, with parameters t1 ¼ 1,
t2 ¼ t3 ¼ 0.2. The energy spectrums are obtained by diagonal-
izing the real-space Hamiltonian under OBC with L ¼ 80. (b),(c)
The PT -exact phase with γ ¼ 0.02; (d),(e) the transition point
with γ ¼ 0.0786; and (f),(g) the PT -broken phase with γ ¼ 0.12.
In (b),(d),(f) the black dashed loop is the BZ, the orange loop is
the GBZ, and other branches in the aGBZ are labeled with
different colors. S2 and S3 in (c),(e),(g) are outside the plot region
of (b),(d),(f).
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complex plane, and the branch point is just the cusp energy.
This explains why the spectrum in the PT -exact phase
simply lies on the real axis [Fig. 1(c)], while it becomes
complex and ramified in the PT -broken phase [Fig. 1(g)].
In the critical cases [Figs. 1(d) and 1(e)], a cusp appears
but the spectrum is still entirely real. This is only possible
when these cusps are also saddle points satisfying
∂βHðβÞ ¼ 0 [56].
The above analysis indicates that the emergence of GBZ

cusps is a geometric origin of non-Bloch PT symmetry
breaking. The Supplemental Material [54] includes more
examples that demonstrate this cusp mechanism, which can
be generally formulated as follows:
(i) A PT -symmetric lattice system has a smooth GBZ if

it is in the non-Bloch PT -exact phase.
(ii) If there are cusps on the GBZ, the system is either in

the non-Bloch PT -broken phase or at the PT transition
point.
The proof of this result is given in [54]. It leverages a

basic property of arbitrary non-Hermitian lattice systems
with short-range hoppings, namely, the analyticity
of the characteristic polynomial fðE; βÞ with respect to β
and E.
Simple formula for the breaking threshold.—In addition

to the geometric origin, another piece of information
conveyed by the model Eq. (1) is that its PT transition
is characterized by the motion of saddle-point energies.
With increasing non-Hermiticity, the energies of S4 and S5
move upward and downward, respectively [Figs. 1(c), 1(e),
and 1(g)]. Notably, along with S4 and S5 being merged into
the GBZ [Fig. 1(d)], their energies coalesce on the real axis
at the transition point [Fig. 1(e)]. For a single-band model
with non-Bloch Hamiltonian HðβÞ ¼ P

r
n¼−l hnβ

n, such a
coalescence is described by

Hðβs;iÞ ¼ Hðβs;jÞ∈R; ð3Þ

where βs;i and βs;j are two different saddle points on the
GBZ, satisfying ∂βHðβÞ ¼ 0. We will demonstrate that the
condition Eq. (3) serves as an efficient criterion for
determining the non-Bloch PT breaking threshold.
We shall rephrase Eq. (3) in two steps to make its

identification more feasible. First, we utilize a mathemati-
cal concept called resultant to search for any degeneracy of
saddle-point energies, i.e., Hðβs;iÞ ¼ Hðβs;jÞ with i ≠ j.
Then, we locate the parameter values that fulfill the
condition Eq. (3) by examining both the reality of the
degenerate energies and whether the associated saddle
points belong to the GBZ. Here, the resultant is defined
to identify whether two given polynomials have a common
root [57]. For example, the resultant Resx½x − a; x − b� ¼
a − b equals zero if and only if the roots x ¼ a and
x ¼ b are degenerate. Recalling that the saddle points
are exactly the common roots of fðE; βÞ ¼ HðβÞ − E ¼ 0
and ∂βfðE; βÞ ¼ ∂βHðβÞ ¼ 0, saddle-point energies

Es;i ¼ Hðβs;iÞ can be directly found by eliminating β,
which results in

gðEÞ ¼ Resβ
�
f̃ðE; βÞ; ∂βf̃ðE; βÞ

� ¼ 0; ð4Þ

where f̃ðE; βÞ ¼ βlfðE; βÞ is used to avoid negative
powers of β. The roots of gðEÞ ¼ 0 are exactly all the
saddle-point energies Es;i, i.e., gðEÞ ∝

Q
iðE − Es;iÞ. On

the other hand, the coalescence condition Eq. (3) suggests
at least a pair of Es;i are degenerate, which is thus
equivalent to ∂EgðEÞ ¼ 0. Therefore, the parameters with
degenerate saddle-point energies can be solved from

ResE½gðEÞ; ∂EgðEÞ� ¼ 0: ð5Þ

A standard procedure to derive the above resultants is
through the Sylvester matrix [54].
When we consider γ variable and other parameters fixed,

ResE½gðEÞ; ∂EgðEÞ� is nothing but a polynomial of γ. We
are now in a place to tell which root of this polynomial truly
contributes to the coalescence described by Eq. (3). In
practice, the desired root is recognized under the following
procedure. We insert γ obtained from Eq. (5) back into
Eq. (4) to find out the degenerate energies Es. Then, we
solve and sort the roots of fðEs;βÞ¼

P
r
n¼−l hnβ

n−Es¼0

as jβ1ðEsÞj ≤ … ≤ jβlþrðEsÞj. Moreover, since Eq. (5) is
equivalent to the existence of a pair of saddle points with
the same energy, we can find two roots βs;i and βs;j from
fðEs; βÞ ¼ ∂βfðEs; βÞ ¼ 0. Finally, according to the GBZ
equation and Eq. (3), the PT breaking threshold is
determined by selecting those roots of Eq. (5) that fulfill
the conditions ImEs ¼ 0 and jβs;ij ¼ jβs;jj ¼ jβlðEsÞj ¼
jβlþ1ðEsÞj [58].
So far, we have built up a systematic algebraic method

for determining the breaking threshold, the power of which
lies in the fact that we are able to find the phase boundary
without diagonalizing the real-space Hamiltonian or
calculating the complete GBZ. In the Supplemental
Material [54], we explicitly illustrate how to conduct this
method step by step for the model Eq. (1) with t2 ¼ t3 ¼ 0.
For more general parameters (t2, t3 nonzero), filtering the
roots of Eq. (5) with the GBZ equation is also accurate and
effortless for determining the phase boundary. We demon-
strate its results in Fig. 2: the boundary between PT -exact
and PT -broken phases in the model Eq. (1) obtained via
diagonalization agrees well with the one through proper
selection of the roots of Eq. (5). The analytic method is,
however, much more efficient and free of finite-size effects.
Not limited to single-band cases, on a non-Hermitian

chain with PT symmetry, the generation of the first pair of
complex conjugate saddle-point energies contained in the
OBC spectrum inevitably involves a coalescence like
Eq. (3). This process, whose transition point is predicted
by the method introduced here, is experimentally detectable
in wave-packet dynamics [20,22,23].
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Non-Bloch van Hove singularity.—As previously men-
tioned, at the PT transition point [Figs. 1(d) and 1(e)],
there exist saddle points on the GBZ that are also cusps.
This is a hallmark of the geometric origin of PT -breaking
transitions. We shall elucidate the observable consequences
of these cusps by examining the non-Hermitian Green’s
function, defined as GðEÞ ¼ ðE −HÞ−1, where H is the
OBC Hamiltonian generated by the Bloch Hamiltonian
[e.g., Eq. (1)]. Practically, GðEÞ can be measured
through frequency-dependent linear responses on various
platforms such as topolectrical circuits [32,59], scattering
processes [60], and open quantum systems [61].
In the PT -exact phase, we define the DOS along the real

axis by ρðEÞ ¼ ðπLÞ−1ImTr½GðEþ i0þÞ�, or, equivalently,
ρðEÞ ¼ L−1 PL

i¼1 δðE − EiÞ, where E and the eigenener-
gies Ei are all real. When the system size L goes to infinity,
the summation over all eigenenergies becomes an integral
along GBZ [54,61]. Thus, we have

ρðEÞ ¼ 1

2π

X
βðEÞ∈GBZ

����Im
�

1

β∂βHðβÞ
�
β¼βðEÞ

����; ð6Þ

which is a natural extension of the well-known formula
ρðEÞ ¼ ð1=2πÞPEðkÞ¼E j∂EðkÞ=∂kj−1 for the Hermitian
case.
According to Eq. (6), the DOS is divergent at any saddle

point on the GBZ. From Figs. 3(a) and 3(b), we find that the
DOS near Es ≈ −0.5096 increases and eventually becomes
divergent at the transition point. This divergence is analo-
gous to the van Hove singularity in Hermitian systems, but
is induced by the singular shape of the GBZ, which is
unique to systems with NHSE. At the non-Bloch PT
symmetry breaking point, the cusps, which are at the same

time saddle points, are responsible for the divergence at Es.
Thus, we coin for this divergence the term non-Bloch van
Hove singularity.
Quantitatively, the asymptotic behavior of the DOS near

a non-Bloch van Hove singularity can be inferred from
Eq. (6). Near a saddle point Es, jβ∂βHðβÞj behaves like
jE − Esjα. Inserting this back into Eq. (6), we find that the
DOS is locally ρðEÞ ∼ jE − Esj−α. Generally, the exponent
α for a kth order saddle point (satisfying HðβÞ − E ¼
∂βHðβÞ ¼ … ¼ ∂

k−1
β HðβÞ ¼ 0) is α ¼ 1 − 1=k. Our model

with nonzero t3 gives α ¼ 1=2, which is in accordance with
the numerical fitting ρ ∼ jE − Esj−1=2 shown in Fig. 3(a).
Interestingly, in our model with t3 ¼ 0, two second-order
saddle points are merged into one third-order saddle point
at the transition point of non-Bloch PT breaking.
According to α ¼ 1 − 1=k, this also implies that the
exponent suddenly changes at the transition point. More
details about the jump of α can be found in [54].
Beyond divergent DOS, the non-Bloch van Hove sin-

gularity also manifests itself in the off-diagonal elements of
GðEÞ. On a finite chain with length L, the end-to-end
Green’s functions exhibit exponential growth or decay,
represented as jGL1ðEÞj ∼ αrðEÞL and jG1LðEÞj ∼ αlðEÞL.
The two scaling factors αrðEÞ and αlðEÞ can be

FIG. 3. Non-Bloch van Hove singularity. (a) The DOS in the
non-Bloch PT -exact phase. (b) A full profile of DOS at the
transition point γc ¼ 0.0786. (c),(d) The frequency dependence
of log αlðEÞ ¼ log jG1LðEÞj=L. (e) dðlog αl;rðEÞÞ=dE for the
scaling factors in (d). The dashed lines in (d),(e) mark the
theoretical predictions based on GBZ. To reduce data fluctuations
due to finite-size effects, the αl;rðEÞ in (d),(e) are obtained by
fitting log jG1LðEÞj and log jGL1ðEÞj with respect to the system
size L. We fix L ¼ 500 in (c) and take L∈ ½100; 300� in (d),(e).
The parameters are t1 ¼ 1, t2 ¼ t3 ¼ 0.2.

FIG. 2. The non-Bloch PT phase diagram of the model Eq. (1)
with t1 ¼ 1, t2 ¼ 0.2. The blue line is the phase boundary
determined by solving Eq. (5). The color map is a density plot
for the proportion P of complex eigenvalues, obtained by
counting the proportion of eigenenergies with jImEj > 10−10.
The eigenenergies are obtained by diagonalizing an OBC
Hamiltonian of length L ¼ 200. The three black stars mark
the parameters used in Fig. 1.
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predicted using non-Bloch band theory [61,62]. For the
model Eq. (1) with t3 ≠ 0, we have αrðEÞ ¼ jβ3ðEÞj and
αlðEÞ ¼ jβ4ðEÞj−1, where jβ3;4ðEÞj are the roots of
HðβÞ ¼ E sorted as jβ1ðEÞj ≤ … ≤ jβ6ðEÞj. When E
belongs to the OBC spectrum, αr;lðEÞ encode crucial
information about GBZ. We find that the frequency
dependence of αr;lðEÞ exhibits a cusp precisely at the
energy of the non-Bloch van Hove singularity [Figs. 3(c)
and 3(d)]. This occurs concurrently with the emergence of
GBZ cusps at the transition point. Furthermore, since these
GBZ cusps are also saddle points, the nonsmoothness of
αr;lðEÞ stems from divergent dαr;lðEÞ=dE [63] [Fig. 3(e)].
Practically, the divergence in dαr;lðEÞ=dE signals extreme
frequency sensitivity in the response to the input signal,
which could potentially inspire designs of non-Hermitian
sensors [64,65].
Conclusions.—We have presented a theory of non-Bloch

PT symmetry breaking in one dimension, which not only
explains its geometric origin but also provides an efficient
formula for the threshold. Given the fact that the concept
of GBZ has recently been generalized to non-Hermitian
continuum systems [66–69] and disordered systems
[70,71], it is an interesting direction to develop our theory
in these contexts. Moreover, it is known that the threshold
in higher dimensions universally approaches zero as the
system size increases [72]. In view of the latest progress on
higher-dimensional GBZ [73,74], our theory can have
implications for PT symmetry in higher dimensions. For
example, since the non-Bloch van Hove singularities are
tied to the non-Bloch PT symmetry breaking in one
dimension, their proliferation in higher dimensions may
be responsible for the universal thresholdless behavior,
which is left for future studies. Back to the 1D cases that are
experimentally most convenient, our predictions can be
verified on various state-of-the-art platforms such as cold
atom [75,76] and quantum optics systems [22].

This work is supported by NSFC under Grant
No. 12125405.
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