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A well-motivated method for demonstrating that an experiment resists any classical explanation is to
show that its statistics violate generalized noncontextuality. We here formulate this problem as a linear
program and provide an open-source implementation of it which tests whether or not any given prepare-
measure experiment is classically explainable in this sense. The input to the program is simply an arbitrary
set of quantum states and an arbitrary set of quantum effects; the program then determines if the Born rule
statistics generated by all pairs of these can be explained by a classical (noncontextual) model. If a classical
model exists, it provides an explicit model. If it does not, then it computes the minimal amount of noise that
must be added such that a model does exist, and then provides this model. We generalize all these results to
arbitrary generalized probabilistic theories (and accessible fragments thereof) as well; indeed, our linear
program is a test of simplex embeddability as introduced in Schmid et al. [PRX Quantum 2, 010331
(2021).] and generalized in Selby et al. [Phys. Rev. A 107, 062203 (2023).].
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A rigorous method for demonstrating that a theory or a
set of data resists any classical explanation is to prove that it
cannot be reproduced in any generalized noncontextual
model [1]. Generalized noncontextuality was first intro-
duced as an improvement on Kochen-Specker’s assumption
of noncontextuality [2], making it more operationally
accessible and providing stronger motivations for it, as a
form of Leibniz’s principle [3]. Since its inception, the list
of motivations for taking it as one’s notion of classicality
has grown greatly. Notably, the existence of a generalized-
noncontextual ontological model for an operational theory
coincides with two independent notions of classicality: one
that arises in the study of generalized probabilistic theories
[4–6], and another that arises in quantum optics [4,6,7].
Generalized noncontextuality has been used as an indicator
of classicality in the quantum Darwinist program [8], and
any sufficiently noisy theory satisfies generalized non-
contextuality [9,10]. Furthermore, violations of local cau-
sality [11], violations of Kochen-Specker noncontextuality
[9,12], and some observations of anomalous weak values
[13,14], are also instances of generalized contextuality.
Finally, generalized contextuality is a resource for infor-
mation processing [15–19], computation [20], state dis-
crimination [21–24], cloning [25], and metrology [26].
Herein, we use the term noncontextuality to refer to the
concept of generalized noncontextuality.
How, then, does one determine in practice whether a

given theory or a given set of experimental data admits a
classical explanation of this sort? We here provide the most
direct algorithm to date for answering this question in
arbitrary prepare-and-measure experiments, and we pro-
vide open-access Mathematica code for answering it in

practice. One need only give a finite set of quantum states
and a finite set of quantum POVM elements as input, and
the code determines if the statistics these generate by the
Born rule can be explained classically—i.e., by a non-
contextual ontological model for the operational scenario.
It furthermore returns an explicit noncontextual model, if
one exists. If there is no such model, the code determines an
operational measure of nonclassicality, namely, the mini-
mum amount of noise which would be required until a
noncontextual model would become possible.
In the Supplemental Material [27], we generalize these

ideas beyond quantum theory to the case of arbitrary
generalized probabilistic theories (GPTs) [46,47] or frag-
ments thereof, leveraging the fact that an operational
scenario admits a noncontextual model if and only if the
corresponding GPT admits a simplex embedding [4].
Indeed, the linear program we derive is simply a test of
whether any valid simplex embedding (of any dimension)
can be found, answering the challenge first posed in
Ref. [4]. We furthermore prove an upper bound on the
number of ontic states needed in any such classical
explanation, namely, the square of the GPT dimension.
The Supplemental Material [27] also explains how our

open-source code implements the linear program we
develop herein.
A large number of previous works have studied the

question of when a set of data admits a generalized non-
contextual model [4–6,48–55]. Most closely related to our
work are Refs. [5,49,50,52]. We elaborate on the relation-
ships between theseworks in our conclusion and in Ref. [27].
For now, we simply note that the linear program (and

dimension bound) that we derive here is closely related to

PHYSICAL REVIEW LETTERS 132, 050202 (2024)

0031-9007=24=132(5)=050202(7) 050202-1 © 2024 American Physical Society

https://orcid.org/0000-0002-4596-7501
https://orcid.org/0000-0002-6960-3796
https://orcid.org/0000-0001-7865-9962
https://orcid.org/0000-0003-3123-8436
https://orcid.org/0000-0002-1935-0495
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.050202&domain=pdf&date_stamp=2024-01-30
https://doi.org/10.1103/PRXQuantum.2.010331
https://doi.org/10.1103/PRXQuantum.2.010331
https://doi.org/10.1103/PhysRevA.107.062203
https://doi.org/10.1103/PhysRevLett.132.050202
https://doi.org/10.1103/PhysRevLett.132.050202
https://doi.org/10.1103/PhysRevLett.132.050202
https://doi.org/10.1103/PhysRevLett.132.050202


an optimization problem introduced in Ref. [52]. However,
Ref. [52] focuses on a proposed modification of general-
ized noncontextuality (which we criticize in the
Supplemental Material [27]), and so the two approaches
do not always return the same result.
Our Letter aims to be accessible and self-contained, in

order to provide a tool for the quantum information and
foundations communities to directly test for nonclassicality
in their own research problems.
A linear program for deciding classicality.—We now set

up the preliminaries required to state our linear program for
testing whether the quantum statistics generated by given
sets of quantum states and effects can be explained
classically—i.e., by a noncontextual model for the opera-
tional scenario. The Supplemental Material [27] general-
izes these ideas and results to arbitrary GPTs.
Consider any finite set of (possibly subnormalized [56])

quantum states Ω, and any finite set of quantum effects E,
living in the real vector space Herm½H� of Hermitian
operators on some finite dimensional Hilbert space H. In
general, neither the set of states nor the set of effects need
span the full vector space Herm½H�, nor need the two sets
span the same subspace of Herm½H�. Next, we introduce
some useful mathematical objects related to Ω and E.
Let us first focus on the case of states. We denote the

subspace of Herm½H� spanned by the states Ω by SΩ. The
inclusion map from SΩ to Herm½H� is denoted by IΩ. In
addition, we define the cone of positive operators that arises
from Ω by

Cone½Ω� ¼
n
ρ
���ρ¼

X
α

rαρα;ρα∈Ω; rα∈Rþ
o
⊂ SΩ: ð1Þ

This cone can also be characterized by its facet inequalities,
indexed by i ¼ f1;…; ng, where n is necessarily finite as
we start with a finite set of states (see, for example,
McMullen’s upper bound theorem [57]). These inequalities
are specified by Hermitian operators hΩi ∈ SΩ such that

trðhΩi vÞ ≥ 0 ∀ i ⇔ v∈Cone½Ω�: ð2Þ

From these facet inequalities, one can define a linear map
HΩ∶ SΩ → Rn, such that

HΩðvÞ ¼ ðtrðhΩ1 vÞ;…; trðhΩn vÞÞT ∀ v∈ SΩ: ð3Þ

Note that the matrix elements of HΩðvÞ are all non-negative
if and only if v∈Cone½Ω�. We denote entrywise non-
negativity by HΩðvÞ ≥e 0 (to disambiguate from using ≥ 0
to represent positive semi-definiteness). Succinctly, we have

HΩðvÞ ≥e 0 ⇔ v∈Cone½Ω�; ð4Þ

and so HΩ is simply an equivalent characterization of
the cone.

Consider now the set of effects E. We denote the subspace
ofHerm½H� spanned by E by SE, and the inclusionmap from
SE to Herm½H� by IE. In addition, we define the cone of
positive operators that arises from E as

Cone½E� ¼
n
γ
���γ ¼

X
β

rβγβ; γβ ∈ E; rβ ∈Rþ
o
⊂ SE : ð5Þ

This cone can also be characterized by its facet inequalities,
indexed by j ¼ f1;…; mg, wherem is again finite, as we are
considering a finite set of effects. These inequalities are
specified by Hermitian operators hEj such that

trðhEj wÞ ≥ 0 ∀ j ⇔ w∈Cone½E�: ð6Þ
From these facet inequalities one can define a linear map
HE∶ SE → Rm, such that

HEðwÞ ¼ ðtrðwhE1Þ;…; trðwhEmÞÞT ∀ w∈ SE : ð7Þ
This fully characterizes Cone½E�, since

HEðwÞ ≥e 0 ⇔ w∈Cone½E�: ð8Þ
One can also pick an arbitrary orthonormal basis of

Hermitian operators for each of the spaces Herm½H�, SΩ,
and SE , and represent IΩ, IE , HE , and HΩ as matrices with
respect to these.
With these defined, we can now present the linear

program which tests for classical explainability (i.e.,
simplex embeddability) of any set of quantum states and
any set of quantum effects in terms of the matrices IΩ, IE ,
HΩ, and HE , defined above and computed from the set of
states and set of effects.
Linear program 1.—The Born rule statistics obtained by

composing any state-effect pair from Ω and E is classically
explainable if and only if the following linear program is
satisfiable:

∃ σ ≥e 0; anm × nmatrix such that ð9aÞ

ITE · IΩ ¼ HT
E · σ ·HΩ: ð9bÞ

Note that if Ω and E span the full vector space of
Hermitian operators, then the linear program simplifies
somewhat, as the l.h.s. of Eq. (9b) reduces to the identity
map on Herm½H�. Note that satisfiability is only a function
of the cones defined byΩ and by E, and so no other features
of the states and effects are relevant to their nonclassicality,
as was also shown in Refs. [48,53]. A useful consequence
of this fact is that Ω and E are classically explainable if and
only if their convex hulls are also classically explainable.
Testing for the existence of such a σ is a linear program.

In the repository [58], we give open-source Mathematica
code for computing the relevant preliminaries and solving
this linear program. The input to the code is simply a set of
density matrices and a set of POVM elements (or, more
generally, GPT state and effect vectors). In practice the
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code runs in a few seconds for values of n and m up to
around 20.
In the case that a classical explanation does exist, the code

will output a specification of an ontological model which
represents the operational scenario in a noncontextual
manner. This model can be computed from the matrix σ,
as described in the SupplementalMaterial [27]. In particular,
every density matrix in ρ∈Ω is represented in the onto-
logical model by a probability distribution μρ over some set
of ontic states Λ, while every POVM element in ε∈ E is
represented by a response function ξε—that is, a [0, 1]-
valued function over Λ. Specifically, we compute a particu-
lar non-negative factorization σ ¼ β · α, where α∶ Rn →
RΛ ≥e 0 and β∶ RΛ → Rm ≥e 0, and then construct linear
maps τΩ ≔ α ·HΩ and τE ≔ βT ·HE , and use these to define
the epistemic states and response functions via

μρðλÞ ≔ ½τΩðρÞ�λ and ξεðλÞ ≔ ½τEðεÞ�λ ð10Þ

for all λ∈Λ. That these functions are all non-negative
follows from the definition of HΩ and HE together with
element-wise non-negativity of α and β; that they are
suitably normalized follows from the manner in which
the decomposition into α and β is chosen. In particular,
the decomposition is constructed by taking β ¼ σ · R and
α ¼ R−1, where R is a diagonal rescaling matrix which
ensures that ξ1ðλÞ ¼ 1 for all λ∈Λ (see Supplemental
Material [27], Sec. C.I for details). Note that other choices
for the decomposition of σ ¼ β · α are possible, and that this
nonuniqueness translates into a nonuniqueness of the
ontological model.
In the case that no solution exists, one can ask how much

depolarizing noise must be added to one’s experiment until
a solution becomes possible. This constitutes an operational
measure of nonclassicality which we refer to as the
robustness of nonclassicality. Finding the minimal amount
r of noise is also a linear program:
Linear program 2.—Let r be the minimum depolarising

noise that must be added in order for the statistics obtained
by composing any state-effect pair from Ω and E to be
classically explainable. It can be computed by the linear
program:

minimize r such that

∃ σ ≥e 0; anm × nmatrix such that ð11aÞ

rITE ·D ·IΩþð1−rÞITE ·IΩ¼HT
E ·σ ·HΩ; ð11bÞ

where D is the completely depolarizing channel for the
quantum system.
Again, the corresponding ontological model can be

straightforwardly computed from the matrix σ found for
the minimal value of r, and we give open-source code that
returns both the value of r and the associated model.

We also discuss in the Supplemental Material [27] how
one can easily adapt one’s definition of robustness and the
linear program for it to an arbitrary noise model.
Examples.—Here we present three examples of sets of

states and effects, and we assess the classical-explainability
of their statistics using our linear program. In the case
where the statistics are not classical, we also compute the
noise robustness. A fully detailed analysis of these exam-
ples (including the explicit calculation of the matrices HΩ,
HE , IΩ, and IE), is given in the Supplemental Material [27].
These specific examples are chosen to illustrate particular
features of our approach, as we discuss therein.
Example 1.—Consider the set of four quantum states

Ω ¼ fj0ih0j; j1ih1j; jþihþj; j−ih−jg ð12Þ
on a qubit. In addition, consider the set of six effects

E ¼ fj0ih0j; j1ih1j; jþihþj; j−ih−j; 12; 0g: ð13Þ
Next, consider the observable statistics—that is, the data

that can be generated from any measurement constructed
with these effects, when applied to any of these states.
Our linear program finds that these statistics admit a

classical explanation. This is to be expected, as this
scenario is a subtheory of the noncontextual toy theory
of Ref. [59] (namely, that given by restricting to the real
plane). Indeed, this is the model which our code returns,
and is depicted in Fig. 1.
Example 2.—Consider the set of four quantum states

Ω ¼ fj0ih0j; j1ih1j; j2ih2j; j3ih3jg ð14Þ

FIG. 1. Classical explanation for example 1. (a) Depiction of
the states in Ω (green dots), embedded in a three-dimensional
slice of a four-dimensional simplex. (b) Depiction of the effects in
E (blue dots), embedded in a 3D slice of the 4D hypercube that is
dual to the simplex in (a). Note that the convex hull of the effects
happens to cover the entire hypercube in this particular slice. The
simplex in (a) can be viewed as the set of probability distributions
over a 4-element set Λ of ontic states (black dots), while the
hypercube in (b) can be viewed as the set of logically possible
response functions for Λ. Hence, this simplex embedding
corresponds to a noncontextual ontological model for—and
hence [4] a classical explanation of—the operational scenario.
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on a four-dimensional quantum system. In addition, consider the set of six effects

E ¼ fj0ih0j þ j1ih1j; j1ih1j þ j2ih2j; j2ih2j þ j3ih3j; j3ih3j þ j0ih0j; 14; 0g: ð15Þ

Notably, the states and effects in this example do not
span the same vector space. Still, our linear program also
finds that the statistical data that arise from this admits a
classical explanation. This is a useful sanity check, since all
the states and effects are diagonal in the same basis. We
provide a depiction of the classical model which our code
returns for this scenario in Fig. 2.
Example 3.—Our third example is obtained from the first

example by rotating all of the effects by an angle of ðπ=4Þ
about the σy axis. (This is the set of states and effects
relevant for parity-oblivious multiplexing [15].) In this
case, our linear program finds that there is no classical
explanation of the observable statistics. Moreover, it finds
that the depolarizing-noise robustness for these states and
effects is r ¼ 1 − ð1= ffiffiffi

2
p Þ ∼ 0.3. In Fig. 3 we depict the

classical model for the case of depolarization at this noise
threshold.
Related linear programs.—We reiterate that the core of

our linear program is closely related to the linear program
introduced in Sec. 4.2 of Ref. [52] as specialized to the
polytopic case (that we consider here) in Sec. 4.3 of
Ref. [52]. However, the approach of Ref. [52] differs from
ours in a critical preprocessing step, and so its assessment
of classicality differs from ours in some examples. Indeed,
their proposal deems example 2 nonclassical, while our
approach deems it classical. But, the “nonclassical” verdict
is clearly mistaken, since all the states and effects in that
example are simultaneously diagonalizable. Still, we
emphasize that the mathematical tools of Ref. [52] are

quite useful and applicable to our notion of classicality, and
indeed even extend some results to non-polytopic GPTs
(although in this case, testing for nonclassicality is likely
not a linear program) via inner and outer polytopic
approximations as discussed in Sec. 4.4 of Ref. [52].
Reference [50] also presented a linear programming

approach which could determine if a prepare-measure
scenario admits a noncontextual model or not. In that
work, however, the input to the linear program required
the specification of a set of operational equivalences for the
states and another set for the effects. In contrast, in the
current work, the input to the algorithm is simply a set of
quantum (or GPT) states and effects. The full set of
operational equivalences that hold among states and among
effects are derivable from this input; however, one need not
consider them explicitly. The linear program we present
here determines if there is a noncontextual model with
respect to all of the operational equivalences that hold in
quantum theory (or within the given GPT).
Reference [49] provided another linear programming

approach to testing noncontextuality in the context of a
particular class of prepare-measure scenarios; namely, those
wherein all operational equivalences arise from different
ensembles of preparation procedures, all of which define the
same average state. Using the flag-convexification tech-
nique of Refs. [48,53], we suspect that all prepare-measure

FIG. 2. Classical explanation for example 2. (a) Depiction of
the states in Ω (green dots), embedded in a 3D slice of a 4D
simplex. (b) Depiction of the effects in E (blue dots), embedded in
a 3D slice of the 4D hypercube that is dual to the simplex in (a).
Note that the convex hull of the states (effects) happens to cover
the entire simplex (hypercube) in this particular slice. Exactly as
in the last example, this simplex embedding corresponds to a
noncontextual ontological model for—and hence [4] a classical
explanation of—the operational scenario.

FIG. 3. Classical explanation for example 3, when depolarized
by r ¼ 1 − ð1= ffiffiffi

2
p Þ. (a) Depiction of the states in Ω (green dots),

embedded in a 2D slice of a 4D simplex. (b) Depiction of the
effects in E (blue dots), embedded in a 3D slice of the 4D
hypercube that is dual to the simplex in (a). Exactly as in the last
example, this simplex embedding corresponds to a noncontextual
ontological model for—and hence [4] a classical explanation of
—the depolarized operational scenario. If the depolarization was
less strong, then such a noncontextual ontological model would
not exist. Visually, we can get some intuition for this by observing
that if we grow either the green square or the blue octahedron,
then we would end up with the states or effects lying outside of
the simplex or hypercube.
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scenarios can be transformed into prepare-measure scenar-
ios of this particular type, in which case the linear program
from Ref. [49] would be as general as the approach we have
discussed herein. However, this remains to be proven.
An interesting open question is to determine the relative

efficiency of these algorithms.
Closing remarks.—Our arguments in the Supplemental

Material [27] demonstrate that if a noncontextual model
exists for a scenario, then there also exists a model with
dim½SΩ� dim½SE� ≤ dim½H�2 ontic states (or less), This
bound was first proven in Ref. [52] by similar arguments.
It is not yet clear if this bound is tight.
Additionally, our arguments in the Supplemental

Material [27] hinge on the existence of a particular kind
of decomposition of the identity channel. The arguments
proving a structure theorem for noncontextual models in
Ref. [6] hinged on a similar decomposition of the identity
channel, and it would be interesting to investigate this
connection further. We hope that a synthesis of the
algorithmic techniques herein with the compositional
techniques of Refs. [6,60] might lead to algorithms for
testing nonclassicality in prepare-transform-measure sce-
narios and eventually in arbitrary circuits.
In Ref. [54], the definition of simplex embedding was

generalized to embeddings into arbitrary GPTs. It would be
interesting to investigate whether similar programs (albeit
most likely not linear ones [61].) could be developed for
testing for such embeddings.
Finally, we note that our linear program and open source

implementation are ideally suited for proving nonclassi-
cality in real experiments [62], especially when coupled
with theory-agnostic tomography techniques [63,64].
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