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The explosion of data on animal behavior in more natural contexts highlights the fact that these
behaviors exhibit correlations across many timescales. However, there are major challenges in analyzing
these data: records of behavior in single animals have fewer independent samples than one might expect. In
pooling data from multiple animals, individual differences can mimic long-ranged temporal correlations;
conversely, long-ranged correlations can lead to an overestimate of individual differences. We suggest an
analysis scheme that addresses these problems directly, apply this approach to data on the spontaneous
behavior of walking flies, and find evidence for scale-invariant correlations over nearly three decades in
time, from seconds to one hour. Three different measures of correlation are consistent with a single
underlying scaling field of dimension Δ ¼ 0.180� 0.005.
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Animals, including humans, exhibit behaviors with
structure on many timescales. In one view, the many time-
scales result from distinct processes, perhaps organized
hierarchically [1,2]. In another view, the wide range of
timescales emerges from interactions among many under-
lying degrees of freedom, perhaps approaching a nearly
scale-invariant continuum [3]. Scale invariance is especially
tantalizing because of possible links to the renormalization
group and critical phenomena [4–6].
The literature on scale invariance in living systems is

dominated by theoretical arguments: why it might be
advantageous for organisms to operate in this regime or
how apparent signatures of criticality and scale invariance
might have more prosaic explanations. This is an opportune
moment to revisit the experiments because we have seen an
explosion of quantitative data on animal behavior under
more naturalistic conditions, in systems ranging from
worms to primates [7–20]. High resolution video imaging
and efficient AI tools combine to make these approaches
more generally applicable [21–23], and these data have
brought renewed attention to thewide range of timescales in
behavior [24–30]. Although we focus here on the behavior
of individual organisms, there is strong evidence for scale
invariance in collective behaviors of flocks and swarms [31].
We can characterize a system either by measuring the

mean behavior in response to external perturbations or by
analyzing the correlations in spontaneous fluctuations of
behavior. Here we take the latter approach, across a wide
range of timescales. However, if correlations are suffi-
ciently long ranged, then in a single behavioral trajectory
we never have truly independent samples and many
statistical intuitions break down. Also, if we are interested
in the longest timescales that we can access in a given

experiment, then by definition we do not have many
samples, independent or not. In order to increase statistical
power, quantitative studies of animal behavior often aver-
age over multiple individual organisms, but this makes
sense only if the different organisms behave in the same
way. In trying to measure correlations over long times,
individual differences are an important confounding factor,
essentially because each individual has an infinite memory
of its own identity. The goal of this Letter is to disentangle
the nonindependence of samples, individual differences,
and genuinely long-ranged correlations.
Many different notions of scale invariance have been

considered in the analysis of behavior, including language.
Maybe the first example is Zipf’s law [32], a kind of scale
invariance in our vocabulary. The signature here is a power-
law distribution for individual words or for the states in a
network of neurons at a single moment in time [33,34].
Closely related is the possibility that in foraging a single
step of exploration spans a distance drawn from a power-
law distribution, as in a Lévy flight [35]. Another idea is
that time for transitions from one state to the next,
especially from a quiescent to an active state, may have
a power-law distribution [36]. Still another idea is that
behavior or its underlying neural dynamics may consist
of an intermittent sequence of “avalanches,” and the size
or duration of these avalanches may have a power-law
distribution [37–39], as in the original sandpile models for
self-organized criticality [3,40]. Although often grouped
together under some umbrella of scale invariance or
criticality, none of these notions require correlations in
the states of a system at widely separated times. A familiar
example of scale-invariant temporal correlations is pro-
vided by anomalous diffusion [41].
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We ground our discussion in the analysis of experiments
on the behavior of walking flies [11,12], andwewill see that
these data provide evidence for scale-invariant correlations
over nearly three decades, from timescales of seconds to one
hour. The raw data are high resolution videos of fruit flies,
from an inbred laboratory stock, walking in a featureless
arena. Video frames are of duration Δt ¼ 0.01 s, single
trajectories are of length Tmax ¼ 3600 s, and we count time
t ¼ 1; 2;… in units ofΔt; there areNf ¼ 59 individual flies
in the dataset [11,12]. Through a combination of linear
and nonlinear dimensionality reduction, these data can be
embedded in a low-dimensional space. In this space, the fly
repeatedly visits small neighborhoods and then jumps to
another, defining 122 discrete behavioral states, which also
can be seen as peaks in the probability distribution over the
continuous space; in addition, there is a null state. Some of
these states have names (e.g., different forms of grooming)
and some do not. The same states can be identified across
related species of flies, and the distribution over these states
varies systematically with evolutionary distance [42].
Trajectories through the discrete state space are strongly
non-Markovian [12] and compressed versions of these state
sequences are described by models with nearly scale-
invariant interactions [30].
We define niðtÞ ¼ 1 if an individual fly is in state i in the

small bin of duration Δt surrounding time t. We can
characterize the correlations, summed over the individual
states, by the (connected) two-point function

Cðt; t0Þ ¼
XNs

i¼1

�hniðtÞniðt0Þ − hnii2
� ð1Þ

¼ Pcðt; t0Þ − PcðindÞ; ð2Þ

where Pcðt; t0Þ is the coincidence probability of finding a
fly in the same state at times t and t0, and PcðindÞ is the
coincidence probability if we draw two independent
samples from the distribution over states. If the behavior
is statistically stationary, then Cðt; t0Þ ¼ Cðt − t0Þ.
Perhaps surprisingly, a serious problem in estimating

these correlations from data is subtracting the mean. If we
estimate hnii as a time average over the behavioral
trajectory of a single fly, then the correlation function
must integrate to zero over the finite duration of our
observations [43]. If trajectories are very long compared
with the timescales of correlation this does not matter, but
long-ranged correlations will be significantly distorted. An
alternative is to estimate hnii as an average both over time
and over an ensemble of flies. However, if individuals have
even slightly different mean behaviors, this also distorts the
correlation function, even violating the condition that CðτÞ
should vanish at large jτj.
To disentangle long-ranged correlations and individual

differences, we take a direct approach. We estimate the

probability that fly α occupies state i by averaging over a
window of duration T,

P̂α
i ðTÞ ¼

Δt
T

XT=Δt

t¼1

nαi ðtÞ: ð3Þ

With an ensemble of Nf flies, we can estimate the variance
across individuals, sampled in independent experiments
and then summed over states,

Φ2ðTÞ ¼
XNs

i¼1

1

Nf

XNf

α¼1

�
P̂α
i ðTÞ −

1

Nf

XNf

β¼1

P̂β
i ðTÞ

�2
: ð4Þ

This is an apparent variance across individuals. It includes
both real differences in the probabilities with which differ-
ent individuals visit the behavioral states and the fact that
our estimates of these probabilities are based on samples of
duration T.
If there are no real individual differences, then the only

reason we see any variance across the ensemble of flies is
because of statistical errors; that is, because our estimates
P̂α
i ðTÞ are based on a finite number of samples and thus

differ from the true probabilities Pα
i . In this case, Φ2ðTÞ

should get smaller at larger T and eventually vanish.
However, if there are true individual differences, then
Φ2ðT → ∞Þ will measure the variance of these differences.
Formally,

hΦ2ðTÞi ¼ Φ2cðTÞ þΦ2;ind: ð5Þ

Here the first term comes from the (connected) correlations
in the behaviors of individuals in Eq. (1),

Φ2cðTÞ ¼
1

Nf

XNf

α¼1

�
Δt
T

�
2XT

t¼1

XT

t0¼1

Cαðt − t0Þ; ð6Þ

where we assume stationarity, while the second term comes
from individual differences,

Φ2;ind ¼
1

Nf

XNf

α¼1

XNs

i¼1

�
Pα
i −

1

Nf

XNf

β¼1

Pβ
i

�2
: ð7Þ

We notice that Φ2cðTÞ is the double integral of an under-
lying correlation function, in the same way that the mean-
square displacement of a diffusing particle is the double
integral of the velocity (auto)correlation function [41]. As
with diffusion, long-ranged behavior in CðτÞ should appear
as an anomalous behavior of the Φ2cðTÞ.
If correlations in the behavioral trajectories of

individuals are short-ranged, then at value of T larger than
the correlation time we will see the connected part
Φ2cðTÞ ∼ 1=T. This corresponds to the intuition that
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variances should decay as the inverse of the number of
independent samples. On the other hand, if correlations are
long-ranged, with a power-law decay Cαðτ→∞Þ∼1=jτj2Δ,
then Φ2cðTÞ ∼ 1=T2Δ at large T. Power-law decays are
referred to colloquially as scale invariant because there is
no characteristic time over which the correlations decay.
However, scale invariance is more than the observation of a
single power law. If behavior is determined by an internal
variable that undergoes scale-invariant fluctuations, then
we should see related power laws in different moments of
these fluctuations [5]. Concretely, we define

ΦnðTÞ ¼
XNs

i¼1

1

Nf

XNf

α¼1

�
P̂α
i ðTÞ −

1

Nf

XNf

β¼1

P̂β
i ðTÞ

�n
; ð8Þ

and the prediction of scale invariance is that

hΦnðT → ∞Þi ¼ An

�
Δt
T

�
γn þ Bn; ð9Þ

with γn ¼ nΔ, and Δ is the “scaling dimension”.
We use these ideas to analyze the behavioral state

sequences in walking flies described above [11,12]. To
estimate Φ2ðTÞ, we follow these steps: (1) Choose a
random window of duration T from the recording of each
individual and estimate the state probabilities. (2) Compute
the summed variance of these probabilities across 1000
random halves of the individuals. (3) Use these many
random halves to compute a mean and standard error for
Φ2ðTÞ. Results are in Fig. 1.
On a linear scale (Fig. 1, left), we see a rapid, subsecond

decay of Φ2ðTÞ. On a semilogarithmic plot (Fig. 1, center)
we see gradual decay out to 1 min, but to reveal the full
behavior we need a doubly logarithmic plot (Fig. 1, right).
This spans five decades in time, which is equivalent to
measuring correlations between letters from neighboring
letters out to the length of a short story. Beyond ∼ 1 s there
is no sign of a characteristic timescale and no clear sign of a
plateau at long times, suggesting that genuine individual

differences are small. The decay is much slower than
Φ2 ∼ 1=T, suggesting that the system has long-ranged
correlations. Indeed, the data for T > 7 s are an excellent
fit to the prediction of Eq. (9).
The choice to fit only T > 7 s is motivated both by the

appearance of Φ2ðTÞ and by the fact that mean residence
times in individual states can be as long as ∼7 s [11].
Thus, for T < 7 s we are probing, in part, the structure of
waiting time distributions for transitions out of single
states, while for T > 7 s we are sensitive mostly to
recurrences where the fly returns to a previously visited
state. We emphasize that, in problems we understand,
scaling is asymptotic [4,6], and so we expect that scaling
behaviors are clearer at larger T. Indeed, it is surprising that
scaling becomes a good description almost at the smallest
possible values of T.
If our description of Φ2ðTÞ is correct, then we can

subtract our estimate of the variance across individuals [B2

in Eq. (9)] to reveal a “clean” power-law decay, as shown at
left in Fig. 2. We see that, over three decades in time, all of
the data points are within errors of a power law with
exponent γ2 ¼ 2Δ, Δ ¼ 0.180� 0.004. Since our defini-
tion of states uses features on the ∼1 s timescale [11], and
our recordings are ∼1 h in duration, it is impossible to see a
“better” power-law in these data.
In the same way that individual differences can mimic

long-ranged correlations, these correlations can mimic
individual differences. Naively, if we estimate state prob-
abilities over the hour long experiment, there is a variance
across individuals that is ∼5× larger than our best estimate
ofΦ2;ind. It would be tempting to interpret this as biological
variability, but this assumes that averaging over one hour is
enough to push the statistical fluctuations below the
individual variations. Because of long-ranged correlations,
this turns out not to be true. Our best estimate is that
individual differences contribute less than 1% of the total
variance in behavior.
Following the discussion above, we can do the same

analysis for Φ3ðTÞ, with the results shown at right in Fig. 2
(blue), and again the fit to Eq. (9) is excellent. We have tried
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FIG. 1. Estimates of the summed variance in state probabilities for walking flies as a function of averaging time; raw data from
Refs. [11,12]. Means and standard errors computed from random halves of the data. Left: linear plot. Center: semilog plot. Right: log-log
plot; solid line is Eq. (9) for n ¼ 2 and T > 7 s, with parameters in Table I. Horizontal line shows the estimated plateau B2 ¼ Φ2;ind, and
dotted line is a decay ∼1=T to the same plateau, as expected if correlation times were short.
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to analyze Φ4ðTÞ, but the error bars are too large for this to
be informative. If there is a single underlying scale-
invariant process, then the exponents for Φ2ðTÞ and
Φ3ðTÞ should be γ2 ¼ 2Δ and γ3 ¼ 3Δ. Thus, the different
moments provide independent estimates of the underlying
scaling dimensionΔ, and Table I shows that these estimates
agree to the third decimal place.
An important lesson from statistical physics is that

structures on long time or length scales are robust to a
range of choices in defining variables on smaller scales.
To test this idea, we redefine the “state” of the system to be
the combined states at two successive moments in time.
Now there are N2

s ∼ 15 000 possible states, of which ∼1200
occur in our sample of 2.1 × 107 frames. We can estimate
the probability for each of these states, as before, from
data in windows of duration T and define the variance

across individuals for these “two-frame states,” Φð2Þ
2 ðTÞ.

We expect that

hΦð2Þ
2 ðTÞi ∼ Að2Þ

2

�
Δt
T

�
2Δ

þ Bð2Þ
2 ; ð10Þ

where Δ is the same scaling dimension as in Φ2ðTÞ and
Φ3ðTÞ, and at right in Fig. 2 (red) this is confirmed.
In summary, behavioral correlations exhibit precise

power-law scaling over three decades in time. To attach
errors to our estimates of exponents, we use the variance
across random halves of the data to construct χ2 between
the predictions of Eq. (9) and the data, then take
Monte Carlo samples from the distribution of fitting
parameters ∝ expð−χ2=2Þ. The result is that measurements
of three different correlation functions are consistent with a
single underlying scaling field, and estimates of the scaling
dimension all agree within the 2%–3% experimental errors
(Table I).
Temporal correlations that decay as a power law are

mathematically equivalent to a mixture of many indepen-
dent processes happening on different timescales. These
could be trivially independent, as with the electron trapping
processes that generate 1=f noise in metals [44], or they
could be the “normal modes” of an interacting network so
that the spectrum of timescales is an emergent property of
the network dynamics [45]. However, true scale invariance
is more than a single power-law decay. In particular, the
consistency of scaling dimensions in three different corre-
lation measures is much more difficult to account for with
simple mixtures of timescales.
A complementary view is to think about the evolution

operator for the probability distribution over states, what
would be the diffusion or Fokker-Planck equation in simple
cases [46]. Then the relevant modes are the eigenfunctions
of this operator, and the power-law decay of the correlation
function tells us that the corresponding eigenvalue spec-
trum has a near continuum extending toward zero. In
general, the connection between correlation functions and
eigenvalue spectra depends on the structure of the eigen-
functions, and again the constraints required for different
correlation functions to have consistent exponents seem
highly nontrivial.
Early evidence for scale-invariant temporal correlations

in human behavior was hidden in Shannon’s 1951 experi-
ments on the prediction of text by human subjects [47,48].
What is surprising here is the precision with which scaling
emerges from the data, at least in this one example. We see
clean power-law behavior across three decades, from
seconds to one hour; errors on exponents are in the third
decimal place, and different correlation functions are
described by exponents that are consistent with one
another, within these small errors, on the hypothesis that
there is a single scale-invariant process controlling behav-
ior. Still, we are doing this analysis on data which now are
nearly a decade old [11]. The next generation of experi-
ments will make continuous measurements of behavior at
the same resolution for weeks rather than for one hour [49].
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FIG. 2. Summed variance in state probabilities as a function of
averaging time, with background subtracted. Left:Φ2cðTÞ. Right:
Φ3cðTÞ (blue) and Φð2Þ

2c ðTÞ (red). Error bars include the standard
error computed from random halves of the data, as in Fig. 1, and
uncertainty in the background. Lines are best fits as in Fig. 1,
parameters from Table I.

TABLE I. Parameter estimates for different measures of varia-
tion across individuals. The underlying scaling dimensions Δ
should agree, while amplitudes A and backgrounds B differ.

Φ2 Φ3 Φð2Þ
2

Δ 0.180� 0.004 0.181� 0.005 0.179� 0.004
A 0.936� 0.054 0.807� 0.047 0.839� 0.048
B 0.0060� 0.0003 0.0010� 0.0001 0.0050� 0.0003
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While it will be necessary to separate circadian and secular
variations, these experiments have the potential to test for
scaling over six decades and to reduce errors in the seconds
to hours range by more than an order of magnitude, getting
close to the precise tests of scaling in equilibrium critical
phenomena [50].
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