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Partial transport barriers in the chaotic sea of Hamiltonian systems influence classical transport, as they
allow for a small flux between chaotic phase-space regions only. We find for higher-dimensional systems
that quantum transport through such a partial barrier is more restrictive than expected from two-
dimensional maps. We establish a universal transition from quantum suppression to mimicking classical
transport. The scaling parameter involves the flux, the size of a Planck cell, and the localization length due
to dynamical localization along a resonance channel. This is numerically demonstrated for coupled kicked
rotors with a partial barrier that generalizes a cantorus to higher dimensions.
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Many quantum phenomena can be well understood using
quantum-classical correspondence. Of particular interest
are situations where this is not the case and new quantum
phenomena emerge. A famous example in the context of
quantum chaotic transport is dynamical localization, where
the quantum localization length is related to the classical
diffusion coefficient [1–8]. Another example is quantum
suppression of transport due to classical partial barriers,
which is well studied in low-dimensional systems [9–16],
but unexplored in higher dimensions.
A classical partial transport barrier separates two chaotic

phase-space regions and allows for the exchange of a flux
Φ between them [9,17,18]. For example, in 2D maps such
partial barriers are 1D lines and the most restrictive ones
arise from invariant manifolds attached to hyperbolic points
or from broken regular tori, so-called cantori. In a 4D map,
this has been recently generalized to a normally hyperbolic
invariant manifold (NHIM) with the structure of a cantorus
[19]. This leads to a 3D partial barrier characterized by a 4D
flux Φ. Note that for time-continuous Hamiltonian systems
partial barriers correspond in transition state theory [20–25]
to dividing surfaces in phase space, e.g., separating
reactants and products of a chemical reaction.
Quantum transport for 2D maps is suppressed if the size

of a Planck cell h is larger than the classical flux Φ [9–16].
Furthermore, in 2Dmaps there is a universal transition from
quantum suppression to mimicking classical transport
depending on the scaling parameter Φ=h [16]. It is an
open question whether such a quantum suppression also
exists in higher-dimensional maps with f ≥ 2 degrees of
freedom. If so, what is the scaling parameter? Can it be
generalized from 2D maps by comparing the classical flux
Φ to the size hf of a Planck cell? Finally, is the transition
universally described by the same transition curve as for
2D maps?
In this Letter we establish a universal transition from

quantum suppression to mimicking classical transport

through a partial barrier in a 4D map. We demonstrate
that the scaling parameter is not Φ=h2, but that it has to be
modified by the localization length of dynamical localiza-
tion. This reveals for higher dimensions a remarkable
combination of the two quantum phenomena of dynamical
localization and quantum suppression of transport through
a partial barrier.
Results.—The universal transition from quantum sup-

pression to mimicking classical transport is demonstrated in
Fig. 1 for a 4D kicked Hamiltonian, see Eq. (4) below. The
transmitted weight w∞, defined in Eq. (9), ranges from zero

FIG. 1. Universal transition from quantum suppression to
classical transport through a partial barrier: dark-colored crosses
show the transmitted weight w∞, Eq. (9), vs scaling parameter
Λ ¼ Φeff=h2, Eq. (2), compared to Eq. (1) (solid line). Light-
colored circles correspond to the incorrect scaling Λ ¼ Φ=h2.
The system is the kicked Hamiltonian, Eq. (4), withK1 ¼ 1.4 and
coupling strengths ξ (0.001, 0.005, 0.01, 0.02, 0.03, 0.04) using
colors (red, orange, yellow, light green, dark green, cyan). For
each coupling 20 values of h, ranging from 1=200 to 1=800, are
used. The insets show the Husimi distribution of a single time-
evolved state, see Fig. 2.
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to one and measures the quantum transport through the
partial barrier relative to the classical transport. The
transition is well described by the universal curve

w∞ ¼ Λ
1þ Λ

; ð1Þ

with the scaling parameter Λ. In contrast to a 2D map,
where Λ ¼ Φ=h [16], we find for a 4D map,

Λ ¼ Φeff

h2
; ð2Þ

where h2 is the size of a Planck cell. The effective 4D flux is
given by two factors,

Φeff ¼ λΦ3D; ð3Þ
which originate from the geometry and dynamics of the
omnipresent resonance channels [26–30] in a 4D phase
space: (i) The chaotic region of a resonance channel extends
in one direction and is enclosed by the partial barrier in all
others. Here,Φ3D is the local flux through the partial barrier
at a point along the channel [19]. (ii) The quantum
localization length λ is due to dynamical localization caused
by classical diffusion along the one-dimensional channel
[1–5]. Thus, the combination of classical and quantum
properties allows for establishing a universal transition
of quantum transport through a partial barrier in higher-
dimensional systems.
Classical system with a partial barrier.—To investigate

the classical and quantum transport through a partial barrier
we consider two coupled kicked rotors obtained from the
kicked Hamiltonian

H ¼ Tðp1; p2Þ þ Vðq1; q2Þ
X
n∈Z

δðt − nÞ; ð4Þ

with kinetic energy T and kick potential V,

Tðp1; p2Þ ¼
p2
1

2
þ p2

2

2
; ð5Þ

Vðq1; q2Þ ¼
K1

4π2
cos ð2πq1Þ þ

ξ

4π2
cos ð2π½q1 þ q2�Þ; ð6Þ

where K1 is the kicking strength and ξ the coupling
between the degrees of freedom. Stroboscopically, after
each kick, one obtains a 4D symplectic map [31],

q01 ¼ q1 þ p1; ð7aÞ

q02 ¼ q2 þ p2; ð7bÞ

p0
1 ¼ p1 þ

K1

2π
sinð2πq01Þ þ

ξ

2π
sinð2π½q01 þ q02�Þ; ð7cÞ

p0
2 ¼ p2 þ

ξ

2π
sinð2π½q01 þ q02�Þ: ð7dÞ

Periodic boundary conditions with period 1 are imposed. In
the following, we fix the kicking strength K1 ¼ 1.4.
For the uncoupled case ξ ¼ 0, the first degree of

freedom (q1, p1) corresponds to a single kicked rotor.
The chaotic dynamics in the p1 direction is restricted by
one-dimensional partial transport barriers extending in the
q1 direction. The flux Φ is the 2D phase-space area which
is transported across the partial barrier in one application
of the map. The partial barrier with the smallest flux is
based on the golden cantorus, which is a broken invariant
curve of golden mean frequency [9,17,18,32]. This can-
torus is extended by the uncoupled second degree of
freedom (q2, p2) to a so-called cantorus-NHIM [19]—a
normally hyperbolic invariant manifold [33–35] with the
structure of a cantorus. This gives rise to a 3D partial
barrier in the 4D phase space with 4D flux Φ [19].
For small couplings ξ > 0, the cantorus-NHIM persists

and is slightly deformed as well as the partial barrier and the
4D flux changes. The coupling leads to a slow diffusion in
the p2 direction so that for transport through the partial
barrier a local flux Φ3Dðp2Þ becomes relevant [19].
In Fig. 2 we visualize the phase space of the 4D map,

Eq. (7), by means of a 3D phase-space slice [36]. The
partial barrier is a 3D surface in the 4D phase space so that
it is a 2D surface (blue) in the 3D phase-space slice.
Because of symmetry, there exist two partial barriers that
divide the phase space into two distinct regions I and II,
see Fig. 2. Geometrically, each region forms a so-called
resonance channel [26–30] which extend in the p2 direction
and are composed of regular and chaotic motion.
Quantum dynamics and transmitted weight.—Quantum

mechanically the dynamics of the kicked Hamiltonian (4) is
described by a Floquet operator

U ¼ exp

�
−
i
ℏ
V

�
exp

�
−
i
ℏ
T

�
ð8Þ

acting on an N2-dimensional Hilbert space where h ¼ 1=N
is the effective Planck constant, see Refs. [36–38]. The time
evolution of a state is given by jψðtþ 1Þi ¼ UjψðtÞi and
can be investigated experimentally [39].
We want to study the time evolution of states initially

placed in region I between the symmetry-related partial
barriers and determine the transport through these partial
barriers to region II, see Fig. 2. To quantify transport we
consider a phase-space volume B in region II and a
projection operator PB onto B. The weight of a state in B
at some time t is given by μB½ψðtÞ� ¼ hψðtÞjPBjψðtÞi. This
can be compared to the classical measure μchB ¼ Vch

B =V
ch,

where Vch is the total chaotic phase-space volume and Vch
B

the chaotic phase-space volume in B. This leads to the
(relative asymptotic) transmitted weight [16]

w∞½ψ � ≔
hμB½ψðtÞ�it

μchB
; ð9Þ
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where h·it is a time average at large times. It reachesw∞ ¼ 1
if a time-evolved state spreads uniformly within the chaotic
region. In contrast, if the time-evolved state does not enterB
one has w∞ ¼ 0.
The transmitted weights w∞ are shown in Fig. 1 as light-

colored circles using the naive scaling parameterΛ ¼ Φ=h2.
No common transition curve is found. Below, we will
discuss how universal scaling can be achieved.
For Fig. 1 we choose initial states in the chaotic part of

region I that are composed of a coherent state jαðq1; p1Þi
centered at ðq1; p1Þ in the first degree of freedom and a
momentum eigenstate at p2 ¼ 0 in the second degree of
freedom, i.e., jψðt ¼ 0Þi ¼ jαðq1; p1Þi ⊗ jp2 ¼ 0i. The
phase-space volume B for the measure w∞ is chosen to
be a 4D box with p1 ∈ ½−0.25; 0.25� and q1, q2, p2 over the
whole period. It encloses a major part of region II and has
the numerical advantage that the projector PB is a sum
over the corresponding momentum eigenstates. The time

average in Eq. (9) is carried out starting at t ¼ 250 000 over
1000 time steps. The transmitted weight is further averaged
over six different initial states with varying coordinates
ðq1; p1Þ in the chaotic part of region I as well as 10 Bloch
phases. This is displayed in Fig. 1 for 20 values of h
(ranging from 1=200 to 1=800) and coupling strengths ξ
(0.001, 0.005, 0.01, 0.02, 0.03, and 0.04). This range of
parameters allows for studying transmitted weights w∞
from almost 0 to almost 1. Classically, the 4D flux Φ and
local flux Φ3Dðp2Þ are determined from the cantorus-
NHIM, see Ref. [19] for details. The flux Φ increases
from 0.000 97 to 0.001 09 for the considered values of ξ.
The flux Φ varies just slightly when changing the

coupling ξ. Consequently, the naive scaling parameter Λ ¼
Φ=h2 is almost constant for fixed h. Surprisingly, in Fig. 1,
the transmitted weight w∞ varies substantially for similar
Λ. This indicates that there has to be some other mechanism
that influences quantum transport.
Dynamical localization and universal scaling.—In order

to understand why the naive scaling parameter Λ ¼ Φ=h2

does not lead to a common transition curve, we consider the
p2 dependence of the intensity of the time-evolved state,

Iðp2Þ ¼
Z

dp1jψðp1; p2Þj2; ð10Þ

shown in Fig. 3. We find that the time-evolved state is
exponentially localized in p2. This is due to dynamical
localization [1–5] caused by diffusion in the p2 direction.
Dynamical localization is generically expected in reso-
nance channels of higher-dimensional systems and has
been demonstrated for 4D maps [40,41]. We determine the

FIG. 2. Phase space of the 4D map, Eq. (7), for K1 ¼ 1.4 and
coupling strength ξ ¼ 0.01 represented by the 3D phase-space slice
jq2 − 0.5j < 10−4withq1; p1 ∈ ½0.0; 1.0� andp2 ∈ ½−0.2; 0.2�with
regular (gray) and chaotic (black) orbits. The partial barriers (blue
surfaces) associated to the cantorus-NHIM divide the phase space
into regions I and II. The Husimi function of a single time-evolved
quantum state (contours at 20%, 2%, and 0.5%) at t ¼ 250 000
is shown in two perspective views for (a) h ¼ 1=200 and
(b) h ¼ 1=800.

FIG. 3. Intensity Iðp2Þ, Eq. (10), of the time-evolved state
started at ðq1 ¼ 0.2; p1 ¼ −0.4Þ and p2 ¼ 0 at t ¼ 250 000 for
h ¼ 1=200, h ¼ 1=480, and h ¼ 1=800 (blue, orange, green,
from narrow to wide). Exponential fits (dashed) determine the
localization length λ. The system is the kicked Hamiltonian,
Eq. (4), with K1 ¼ 1.4 and coupling strength ξ ¼ 0.01. Note that
the tails show a nonexponential decay at small values, which does
not influence quantum transport through the partial barrier. The
inset shows the localization length λ vs h−1 for the same coupling
strengths ξ as in Fig. 1 and the scaling h−1 (dashed line).
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localization length λ by fitting an exponential decay to the
central part of Iðp2Þ at sufficiently large times (and addi-
tionally averaging over a time interval, initial states, and
Bloch phases). The localization length λ increases with
decreasing Planck constant h, see inset of Fig. 3. As
expected for dynamical localization [1–5], we observe
λ ∝ h−1. Deviations occur only if λ is large and covers a
p2 range with varying diffusion coefficient or if λ is smaller
than the spacing of the momentum grid.
This localization in the p2 direction has an important

consequence for describing the transition from quantum
suppression tomimicking classical transport. The 4D fluxΦ
corresponds to a phase-space volume extending along the
entire p2 coordinate. For a localized time-evolved state,
however, we propose that just an effective fluxΦeff ¼ λΦ3D,
Eq. (3), is relevant. Here, Φ3D is the local flux [19] through
the partial barrier at the point p2, where the time-evolved
state localizes with the measured localization length λ. For
simplicity, we assume that the variation of Φ3D within the
localization length λ is negligible, so that the effective flux
Φeff can be written as a product of λ andΦ3D. Therefore, we
use the scaling parameter Λ ¼ Φeff=h2, Eq. (2).
Figure 1 shows that using this adapted scaling parameter

the transmitted weights w∞ follow a universal curve. The
transition is well described by Λ=ð1þ ΛÞ, Eq. (1), pre-
viously found for a 2D map [16], and thus establishes
universality for different phase-space dimensions.
The effective flux Φeff increases under variation of ξ

from 0.001 to 0.04 mainly due the localization length λ,
which for example for h ¼ 1=800 increases from 0.002 to
0.114. In contrast, Φ3Dðp2 ¼ 0Þ varies just slightly from
0.000 97 to 0.000 98. This highlights the relevance of
dynamical localization along a resonance channel for
quantum transport through a partial barrier.
Note that due to the presence of two partial barriers one

would have to use twice the flux in the scaling parameter.
However, this is compensated due to the symmetry of the
map [42]. Furthermore, we find that the universal scaling
also holds for initial states with different values of p2,
which lead to substantial changes in the localization
lengths [42].
We now discuss limiting cases and generalizations of

Eqs. (2) and (3). (i) In the limit of zero coupling, ξ ¼ 0,
Eq. (2) reduces to the 2D case. This follows from Eq. (3)
with λ ¼ h, which is the spacing of the momentum grid.
Furthermore, Φ3D ¼ Φ2D × 1, where the factor 1 is the
extent in the q2 direction. This gives Φeff ¼ λΦ3D ¼ hΦ2D.
Inserted into Eq. (2), this leads to Λ ¼ Φeff=h2 ¼ Φ2D=h as
for 2D maps. (ii) For increasing localization length λ the
approximation Φeff ¼ λΦ3D is no longer accurate as the
variation of Φ3D ¼ Φ3Dðp2Þ has to be considered by
integrating over p2. (iii) If the localization length is larger
than the system size in p2, thenΦeff ¼ Φ which isΦ3Dðp2Þ
integrated over the whole extent in the p2 direction.
(iv) More generally, if in part of a resonance channel there

is no dynamical localization, e.g., due to drift-induced
delocalization [43], the localization length in Eq. (3) has to
be replaced by the length of this part of the resonance
channel.
Summary and outlook.—We have established that there

is a universal transition from quantum suppression to
mimicking classical transport through a partial barrier in
a 4D map. The transition is well described by Eq. (1) which
is the same as for lower-dimensional systems. The univer-
sality is achieved when using the scaling parameter, Eq. (2),
involving the Planck cell of size h2 and the effective flux
Φeff . For this the localization length λ due to dynamical
localization along a resonance channel plays a key role, see
Eq. (3). This is demonstrated in Fig. 1 for the transmitted
weight through a partial barrier associated with a cantorus-
NHIM.
The results show that in 4D maps the partial barrier is

quantum mechanically more restrictive than expected from
2D maps. Namely, for quantum transport to occur, it is not
sufficient that the Planck cell of size h2 is smaller than the
flux Φ. Instead, h2 has to be smaller than the effective flux
Φeff which is reduced compared to Φ due to dynamical
localization.
For a generic 4D map, e.g., Eq. (4) with large kicking

and coupling strengths, we expect that partial barriers
influence quantum transport in a similar way as for our
model system. However, one first has to identify in the
classical phase space the most relevant partial barrier and
determine its flux. These are open tasks for the future. On
the quantum mechanical side, the determination of the
transmitted weight is more time consuming, as in general
one has to compute the Husimi function, instead of using a
momentum representation as possible for the model
system.
We expect that the universal transition also applies to

even higher-dimensional maps with f ≥ 3 degrees of
freedom, when using the scaling parameter Λ ¼ Φeff=hf.
In particular, one-dimensional resonance channels, sepa-
rated by a partial barrier, still are omnipresent and lead to
dynamical localization. This can be extended from time-
discrete maps also to time-continuous Hamiltonian sys-
tems. The universal transition is also reflected in the
properties of the chaotic eigenstates which are either
confined on one side of the partial barrier or extend beyond
it. Potential applications are in the context of chemical
reactions and in many-body quantum chaos.
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