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Bernal bilayer graphene hosts even-denominator fractional quantum Hall states thought to be described
by a Pfaffian wave function with non-Abelian quasiparticle excitations. Here, we report the quantitative
determination of fractional quantum Hall energy gaps in bilayer graphene using both thermally activated
transport and by direct measurement of the chemical potential. We find a transport activation gap of 5.1 K at
B ¼ 12 T for a half filled N ¼ 1 Landau level, consistent with density matrix renormalization group
calculations for the Pfaffian state. However, the measured thermodynamic gap of 11.6 K is smaller than
theoretical expectations for the clean limit by approximately a factor of 2. We analyze the chemical
potential data near fractional filling within a simplified model of a Wigner crystal of fractional
quasiparticles with long-wavelength disorder, explaining this discrepancy. Our results quantitatively
establish bilayer graphene as a robust platform for probing the non-Abelian anyons expected to arise as the
elementary excitations of the even-denominator state.
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Non-Abelian anyons [1] are thought to enable fault-
tolerant topological quantum bits through their nontrivial
braiding statistics [2,3]. In an ideal scenario, the error rate of
such qubits is limited only by the density of thermally excited
quasiparticles present in the system. Such processes—
analogous to quasiparticle poisoning in superconducting
qubits—are exponentially suppressed at low temperature
by an Arrhenius law, nqp ∝ exp ð−Δqp=2kBTÞ, where Δqp
is the energy gap for non-Abelian quasiparticles and T is the
temperature. The energy gap is, thus, a key figure of merit for
candidate non-Abelian states. According to numerical cal-
culations [4,5], non-Abelian ground states are the leading
candidates to describe the even-denominator fractional quan-
tumHall (FQH) states observed in the second orbital Landau
level of single-component systems such as GaAs quantum
wells [6]. While these numerical results are thought to be
reliable, the small energy gaps measured for these states in
GaAs [7–10] have hampered experimental efforts to directly
probe non-Abelian statistics via fusion and braiding of
individual quasiparticles.
Within the simplest model of bilayer graphene, the

N ¼ 0 and N ¼ 1 orbital levels are both pinned to zero
energy [11]. Combined with the spin and valley degener-
acies native to graphene quantum Hall systems [12],
this produces an eightfold degeneracy—a seemingly
inauspicious arena for the single-component physics of

non-Abelian FQH states. However, as a wealth of exper-
imental work has shown, all of these degeneracies are lifted
by the combination of electronic interactions and the applied
displacement field [13–23]. In particular, broad domains of
density and displacement field are characterized by partial
filling of a singly degenerate N ¼ 0 or N ¼ 1 Landau level.
In the N ¼ 1 regime, an incompressible state is observed at
half-integer filling [18,21–23], which calculations show
should be described by a non-Abelian Pfaffian ground state
[22,24–26]. Prior measurements of energy gaps have found
activation gaps as large as 1.8 K at B ¼ 14 T; however,
precise comparisons of activation and thermodynamic gaps to
theoretical expectations have not been previously reported.
Here, we report energy gaps for both odd- and even-

denominator FQH states in bilayer graphene using both
transport and chemical potential measurements. Thermally
activated transport measures the energy cost of creating a
physically separated quasiparticle-quasihole pair. We mea-
sure activated transport using a Corbino-like geometry
[27,28], which directly probes the conductivity of the
gapped, insulating bulk. Chemical potential measurements
record a jump at incompressible filling factors known as the
thermodynamic gap, which—in the clean limit—measures
the difference between adding charge �e to the gapped
system. We measure the thermodynamic gap using a
direct-current charge sensing technique based on a
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double-layer device [29,30]. Combining these techniques,
we find several new features, including weak FQH states at
ν ¼ 5=11, ν ¼ 6=11, and ν ¼ 5=9 of a partially filled
N ¼ 1 Landau level. Moreover, both schemes show an
energy gap for a half filled single-component Landau level
that is several times larger than reported to date for a candidate
non-Abelian state in any system [7–9,22,23,31–33]. Notably,
these measurement schemes effectively average over
∼10 μm2-sized areas, a testament to the exceptional uni-
formity of the electron gas in bilayer graphene.
Figure 1(a) shows a schematic of the experimental

geometry used to measure the chemical potential μ. A
graphene bilayer hosting the FQH system of interest is
separated by a 62-nm-thick hexagonal boron nitride (h-BN)
dielectric from a graphene monolayer that functions as a
sensor. Both layers are encapsulated by additional h-BN
dielectrics and graphite gates, creating a four-plate geom-
etry that allows independent control of the carrier density
on both the monolayer detector and bilayer sample layer.
We measure Corbino transport in the detector layer, where a
FQH state functions as a sensitive detector of the local
potential. An optical image of the Corbino contacts is
shown in Fig. 1(b). As described in detail in Supplemental
Material [34], monitoring transport in the sensor layer
allows us to precisely determine μ of the bilayer sample. An
advantage of our technique is that it avoids finite-frequency
modulation of the carrier density, allowing us to accom-
modate charge equilibration times as large as a second. The
current technique is less invasive than previous capacitance
measurements [22], requiring no modulation of the sample
density and reducing heating due to cryogenic semicon-
ductor amplifiers.

Figures 1(c) and 1(d) show μ and dμ=dνmeasured in our
bilayer graphene device at B ¼ 13.8 T. In the N ¼ 0
Landau level, incompressible spikes are observed at fillings
corresponding to the two- and four-flux “Jain” sequence
[39], with denominators as high as 17. In the N ¼ 1 orbital,
a different hierarchy is observed, including a prominent
state at νþ 1 ¼ 1=2 along with states at 8=17 and 7=13
filling. This sequence is consistent with a Pfaffian state
at half filling and Abelian “daughter” states built from its
elementary excitations [22,40]. Additional peaks are
observed at fillings consistent with the four-flux Jain
sequence, at 3=5 and 2=5, and finally several weaker states
at 5=11, 6=11, and 5=9which were not previously reported.
Away from these incompressible fillings, the compress-
ibility is negative throughout the partially filled Landau
level [41,42]. Additional negative compressibility is
observed near the incompressible states, associated with
the formation of Wigner crystals of fractionally charged
quasiparticles at low quasiparticle density.
Figure 2(a) shows the two-terminal conductance (G) in a

second sample consisting of a dual-gated bilayer with
Corbino-like geometry (see Supplemental Material [34]).
Measurements are taken at B ¼ 12 T in a partially filled
N ¼ 1 Landau level corresponding to filling factors 0.25≲
νþ 3 < 0.75 (see Supplemental Material [34]). The acti-
vation gap and chemical potential measurements were not
performed in the same filling factor range due to constraints
arising from the electrical contacts to the bilayer or sensor
layer. However, the states originate from the same orbital
level and differ only in their valley isospin. Consequently,
they are treated theoretically in the same way, taking
into account orbital levels and a single spin or valley

(a)

(b)

(c) (d)

FIG. 1. Chemical potential and inverse compressibility of bilayer graphene fractional quantum Hall states. (a) Device schematic
showing the h-BN layers (blue), top and bottom graphite gates (dark gray), monolayer graphene detector layer connected to Corbino
contacts, and bilayer graphene sample layer. (b) Optical image of the Corbino contacts to the monolayer graphene detector. White
dashed lines show the trajectory of a chiral edge state along trenches etched through the device, which ensures contact between the metal
and dual-gated sample bulk. (c) The top panel shows the measured μ at B ¼ 13.8 T and T ¼ 50 mK in the partially filled N ¼ 0 level
spanning 0 < ν < 1. The bottom panel shows the inverse compressibility dμ=dν, calculated by numerically differentiating the data in the
top panel. (d) The same as (c) but for the partially filled N ¼ 1 orbital Landau level spanning −1 < ν < 0.
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component. The three most prominent FQH states, at
νþ 3 ¼ 1=3; 1=2, and 2=3, all show vanishing conduct-
ance at the lowest temperatures. Figure 2(b) shows the
minimal conductance for νþ 3 ¼ 1=2 and 2=3 as a
function of the temperature, along with fits to an
Arrhenius law G ∝ nqp ∝ e−Δqp=2kBT. For the 1=2 state,
the activation gap is found to be 5.1 K at B ¼ 12 T,
considerably larger than previous measurements in other
two-dimensional electron systems [7–10,32,33]. The
increase relative to the GaAs ν ¼ 5=2 state is expected
due to the higher electron density and lower dielectric
constant of the van der Waals platform. Interestingly, the
gap is also much larger than previously reported in bilayer
graphene [22,23], under the same conditions. We attribute
this to the Corbino geometry used here, which directly
probes the bulk conductivity, avoiding systematic under-
estimates resulting from poor equilibration of electrical
contacts with the chiral edge states [27,28].
We may compare the result for the activation gap with a

numerical calculation that accounts for the microscopic
details of bilayer graphene, accomplished using the density
matrix renormalization group (DMRG) [43,44]. Following
Ref. [22], these calculations are conducted on an infinite

cylinder within a four-band model of bilayer graphene and
account for mixing between theN ¼ 0 and 1 Landau levels,
screening from the gates and—crucially—screening due to
inter-Landau level transitions, which is treated within the
random phase approximation (see Supplemental Material
[34]). We obtain a quasiparticle gap ΔDMRG

qp ¼ 0.011EC,
where the Coulomb energy scale EC depends on both the
magnetic field and the dielectric constant for h-BN, which
we take as ϵh-BN ¼ ffiffiffiffiffiffiffiffiffiffi

ϵxyϵz
p ¼ 4.5 [30]. The calculated gap

is 5.6 K at 12 T, within 10% of the experimental value.
The jump in chemical potential at fractional filling, Δμ,

provides an alternative measurement of the FQH energy
gaps, as shown in Figs. 2(c) and 2(d) measured at
B ¼ 13.8 T. For the 1=2 state in Fig. 2(c), the Δμ jump
of 1.0 meV corresponds to a temperature of 11.6 K. In the
clean limit, Δμ corresponds to the energy cost of adding a
whole electron to the gapped system and is expected to be
e=e� times larger than the quasiparticle gap, where e� is
the quasiparticle charge. At ν ¼ −1=2, where e=e� ¼ 4, the
quasiparticle gap Δμ

qp ¼ Δμ=4 ¼ 2.9 K implied by the
thermodynamic measurement is significantly smaller than
Δact

qp ≈ 5.1 K, even before accounting for the small differ-
ence in B between Figs. 2(a) and 2(c). A similar discrep-
ancy is seen at νþ 1 ¼ 2=3, where Δact

qp ≈ ð7.6� 0.5Þ K
but the quasiparticle gap from thermodynamic measure-
ments is Δμ

qp ¼ 5.2 K.
We attribute the discrepancy to the contrasting role of

disorder on the thermodynamic and activation gaps. In the
simplest model for activated transport [45], disorder does
not reduce the activation gap, while in more detailed
models the activation gap is reduced by an amount that
depends on the spatial correlations of the disorder potential
[46,47]. On the other hand, disorder always reduces the
thermodynamic gap, as it produces in-gap localized states
which result in a finite compressibility. So, while disorder
affects both gaps, it does so through different mechanisms,
and we expect the reduction of the thermodynamic gap to
be larger. To assess this hypothesis, we compare our data
against a phenomenological model for μðνÞ that accounts
for both the disorder and quasiparticle interactions. Our
model assumes that the compressible states adjacent to the
incompressible FQH states are Wigner crystals of fraction-
ally charged quasiparticles [42,48]. As a starting point, we
compute the energy density EðνÞ of this pristine Wigner
crystal under the assumption that the fractional point
charges e� form a triangular lattice and interact through
an effective Coulomb potential which accounts for screen-
ing from the gates as well as the dielectric response of the
parent gapped state. In the disorder-free limit, we obtain
theoretical μðνÞ curves in which an infinitely sharp jump of
Δμ ¼ ðe=e�ÞΔqp is flanked by the negative compressibility
of the screened Wigner crystal (see Supplemental Material
[34]). As shown in Figs. 2(c) and 2(d), we find this
disorder-free model provides a good fit to the data at

(a) (c)

(b) (d)

FIG. 2. Comparison of activation and thermodynamic gaps in a
partially filled N ¼ 1 Landau level. (a) Two-terminal conduct-
ance measured in a Corbino geometry as a function of filling
factor at B ¼ 12 T for different temperatures. The temperature
spacing is 5 mK. (b) Activation gap from the Arrhenius fit for
ν ¼ −3þ 1=2 (red) and ν ¼ −3þ 2=3 (blue). (c) Chemical
potential measurement near ν0 ¼ −1þ 1=2 (red dots) at
B ¼ 13.8 T. Theory fit using the Wigner crystal model in the
clean limit (light red line) and in the disordered limit (red line).
(d) Chemical potential measurement near ν0 ¼ −1þ 2=3 (blue
dots) at B ¼ 13.8 T. Theory fit using the Wigner crystal model in
the clean limit (light blue line) and in the disordered limit
(blue line).
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moderate quasiparticle densities, where the compressibility
is strongly negative.
To account for disorder, we make the assumption that the

disorder potential varies slowly in comparison with both
the interquasiparticle distance and the distance to the gates.
As described in Supplemental Material [34], this allows us
to make a local density approximation; μðνÞ can then be
solved for explicitly given the interaction energy density
EðνÞ and the disorder distribution P½VD�, which we assume
to be a Gaussian of width Γ. We note that these assumptions
may not be correct. For example, it will not be the case if
the disorder arises from dilute Poisson-distributed charge
impurities in the h-BN. Nevertheless, it results in a tractable
model that accounts for the competition between disorder
and interactions.
Fits to this model are shown in Figs. 2(c) and 2(d) near

ν ¼ −1þ 1=2 and ν ¼ −1þ 2=3. The fit is parametrized
by the quasiparticle gap Δfit

qp, a phenomenological param-
eter χ which accounts for the dielectric response of
the parent state, and the disorder broadening Γ (see
Supplemental Material [34]). We find quantitative agree-
ment between the Wigner crystal model and experiment,
providing strong evidence for a Wigner crystal of fraction-
alized quasiparticles. From the fit, we infer Δfit

qp ¼ 7 K for
the 1=2 state, within 20% of ΔDMRG

qp ¼ 6.0 K. The same
analysis for the ν0 ¼ −1þ 2=3 gives Δfit

qp ¼ 11.6 K, again
within 20% of the ΔDMRG

qp ¼ 11.7 K. For both fillings, we
find Γ ¼ 1.0� 0.5 meV, consistent with previous esti-
mates for the Landau level broadening [27,28]. The
comparison between experimental and theoretical gaps is
summarized in Table I.
Given the rather large discrepancies between experiment

and numerics in GaAs [49]—particularly at half filling—
the level of agreement we find for both activated and
thermodynamic gaps with numerical modeling is encour-
aging. We note that several sources may account for the
remaining quantitative discrepancies in our work. These
include differences in inter-Landau level screening
strength at ν ∼ −3 relative to ν ∼ −1 [50], as well as
possible spin textures in the excitation spectrum, which
can lower the activation gap but are not accounted for in

our modeling. For Δfit
qp, moreover, the phenomenological

nature of our model for disorder may not capture the
microscopic physics at a quantitative level. Finally, we
note that the discrepancy between theory and experiment is
greater at 2=3 than at 1=2, perhaps due to the greater
quasiparticle charge resulting in a greater effect of the
disorder potential.
Figure 3(a) shows theμmeasured at different temperatures

near the νþ 1 ¼ 1=2 gap. We focus on the strong temper-
ature dependence of Δμ, plotted for several incompressible
filling factors in Fig. 3(b) (see also Supplemental Material
[34]). We fit the low-temperature limit of ΔμðTÞ using the
Sommerfeld expansion ΔμðTÞ ¼ Δ0 − bT2 þ � � �, which is
justified so long as the quasiparticles experience short-range
repulsion. The fitted valuesΔ0 andb are reported inFigs. 3(c)
and 3(d), respectively.
Notably, the ν ¼ −1þ 1=2 state shows anomalously

strong temperature dependence, manifesting as a large
value of the b parameter. Note that this state becomes
compressible at about 800 mK in Fig. 3(a), which corrob-
orates with the deviation from activated transport at high
temperature in Fig. 2(b). According to the Maxwell relation
ðdμ=dTÞjn ¼ −ðds=dnÞjT , this suggests an anomalous
contribution to the entropy in the dilute quasiparticle limit.
Anomalous entropy is expected in the vicinity of non-
Abelian states [51] owing to the topological degeneracy
of a dilute gas of non-Abelian anyons. However, this
contribution is considerably smaller than the anomalous

TABLE I. Comparison of the quasiparticle gaps at 1=2 and 2=3
filling in the N ¼ 1 Landau level as determined by DMRG
calculations ΔDMRG

qp , thermally activated transport Δact
qp , the

chemical potential jump Δμ
qp, and from the fit to the Wigner

crystal model Δfit
qp.

Filling νþ 1 B Δact
qp Δμ

qp Δfit
qp ΔDMRG

qp

1
2

12 T 5.1 K � � � � � � 5.6 K
13.8 T � � � 2.9 K 7.0 K 6.0 K

2
3

12 T 7.6 K � � � � � � 10.8 K
13.8 T � � � 5.2 K 11.6 K 11.7 K

(a) (b)

(c) (d)

FIG. 3. Temperature-dependent μ near fractional filling. Mea-
surements are performed at B ¼ 13.8 T. (a) Chemical potential
near half filling of an N ¼ 1 Landau level at several different
temperatures. (b) Chemical potential jump across the incom-
pressible states as a function of the temperature for different
filling factors in an N ¼ 1 LL (dots). The solid lines are a low-
temperature fit, ΔμðTÞ ¼ Δ0 − bT2. (c) Chemical potential jump
Δ0 extracted from the fit for different fractional states in the
N ¼ 0 (ν̃ ¼ ν, red dots) and N ¼ 1 (ν̃ ¼ νþ 1, orange dots)
orbital Landau levels. (d) Temperature decay parameter b
extracted from the fit.
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entropy we observe. This implies that the anomalous
entropy near ν ¼ 1=2—at least at the filling factors
corresponding to the extrema in μ—does not arise solely
from the topological degeneracy. Notably, these extrema
occur at a density of quasiparticles where the average
interquasiparticle distance is larger than the distance to the
gate. Disorder is expected to dominate this regime, as
interquasiparticle interactions are screened. Crudely, if
disorder is more important than the long-range Coulomb
interaction, we expect b ∝ ðe=e�Þ2=Γ, where Γ is the
strength of the disorder. However, determining the
prefactor requires understanding the thermodynamics
of a Coulomb glass of fractionalized particles in an
unknown disorder distribution, a challenge we leave to
future work.
In closing, we note that a related manuscript reports

scanning tunneling microscopy to study the same bilayer
graphene FQH states studied here [52]. In that work, the
gate voltage δVg over which the FQH gaps appear provides
a local measurement of the thermodynamic gap. Those
authors find 4ΔSTM

qp ¼ 30 K for the 1=2 state at B ¼ 14 T.
This result is consistent with the intrinsic gap inferred
from our Wigner crystal (WC) model, 4ΔWC

qp ∼ 28 K, as
expected for a local measurement that probes the chemical
potential at length scales smaller than the disorder corre-
lation length. The large intrinsic gaps manifesting across
several experimental techniques show that bilayer graphene
is an ideal platform to explore the intrinsic physics of non-
Abelian anyons in the solid state.
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