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Stochastic processes are commonly used models to describe dynamics of a wide variety of non-

equilibrium phenomena ranging from electrical transport to biological motion. The transition matrix
describing a stochastic process can be regarded as a non-Hermitian Hamiltonian. Unlike general non-
Hermitian systems, the conservation of probability imposes additional constraints on the transition matrix,
which can induce unique topological phenomena. Here, we reveal the role of topology in relaxation
phenomena of classical stochastic processes. Specifically, we define a winding number that is related to
topology of stochastic processes and show that it predicts the existence of a spectral gap that characterizes

the relaxation time. Then, we numerically confirm that the winding number corresponds to the system-size
dependence of the relaxation time and the characteristic transient behavior. One can experimentally realize
such topological phenomena in magnetotactic bacteria and cell adhesions.
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Introduction.—Since the discovery of the quantum Hall
effect [1,2], band topology has played an important role in
condensed matter physics. Topology guarantees invariance
against continuous deformations, which is the origin of the
robustness of topological phenomena [3,4]. Recently, the
notion of topology has been extended to non-Hermitian
systems [5-9], and unique phenomena such as the locali-
zation of bulk eigenvectors known as the non-Hermitian
skin effect (NHSE) [10-21] have broadened the range of
applications.

On another front, stochastic processes are commonly
used as models of nonequilibrium systems [22-25], which
have attracted growing interest thanks to the recent progress
in experimental techniques [26,27]. One of the typical
theoretical approaches to stochastic processes is based on
Markov jump processes, which can model various non-
equilibrium phenomena including adaptation [28,29] and
ultrasensitivity [30—32] in biological systems. The dynam-
ics of a Markov jump process is described by the master
equation, which can be regarded as a non-Hermitian
Schrodinger equation because of its linearity. In recent
years, there have been studies that apply topological
methods to the master equations [33-39]. These attempts
have argued localized stationary states [35] and Hall-effect-
like chiral edge modes [37], as analogs of conventional
topological edge modes. Yet it is still unclear whether or not
there are topological phenomena genuinely unique to
stochastic processes.

In this Letter, we propose a unique topological fea-
ture of one-dimensional classical stochastic processes,
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characterized by the correspondence between bulk topo-
logy and relaxation phenomena. This does not fall into the
class of conventional topological phenomena described by
general non-Hermitian band structures. Specifically, we
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FIG. 1. Schematic of the correspondence between winding

numbers and relaxation phenomena for (a) nonzero and (b) zero
winding numbers. The upper figures show the spectra under
the PBC. The lower figures show the time evolutions of the
probability distribution (blue solid curves) and the steady state
(red dotted curves) under the OBC. In systems with nonzero
winding numbers (a), the displacement is proportional to ¢
because of the drifted motion. Meanwhile, in systems with zero
winding numbers (b), the width of the distribution is proportional
to \/f because of the diffusion. Furthermore, in the topological
case, the overlaps between the distribution and the steady state
suddenly increase at a certain period, which is observed as a
cutoff phenomenon.
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TABLE I. Summary of the correspondence between the wind-
ing number and the relaxation phenomena.

Winding Spectral Relaxation Cutoff
number gap time phenomena
Nonzero Nonzero O(N) Exist
Zero Gapless O(N?) Not exist

define a winding number that characterizes topology of the
system under the periodic boundary condition (PBC) where
the system forms a cycle without boundaries [40] and show
the corresponding qualitative changes in the relaxation
behavior. Figure 1 shows the schematic illustration of these
changes in terms of the time evolution of the probability
distribution. Our key theoretical finding is that nonzero
winding numbers imply the finite spectral gap below the
zero spectrum of transition-rate matrices under the open
boundary condition (OBC) where the system has two boun-
daries at both ends [40]. This is a manifestation of the role
of topology in relaxation phenomena, as the first spectral
gap determines the relaxation time of the transition-rate
matrix. Quantitatively, we will observe that the finite
spectral gap implies O(N) relaxation time with N being
the system size, while the vanishing spectral gap implies
O(N?). In addition, we show that nonzero winding num-
bers accompany the so-called cutoff phenomena [41-44],
where the relaxation does not occur until a certain time
and then rapidly proceeds. These relaxation features are
characterized by the winding number, as summarized in
Table 1. We discuss the possible realization of the proposed
topological relaxation phenomena in magnetotactic bac-
teria [45,46] and cell adhesions [47-49].

Setup.—We consider a general stochastic process descri-
bed by a master equation (d/dt)p(t) = Wp(r), where p(¢)
is a vector representing the probability distribution of the
system and W is a transition-rate matrix. We can formally
regard the master equation as a non-Hermitian Schrodinger
equation by considering the transformation H = ihW.
Unlike general non-Hermitian Hamiltonians, the off-
diagonal components of W should be non-negative real
numbers and the sum of each column of W always gives
zero. These constraints can lead to unique properties
beyond general non-Hermitian systems as detailed below.

In addition, we assume that the process is ergodic. The
Perron-Frobenius theorem states that every ergodic sto-
chastic process has a unique stationary state with zero
spectrum, and the real parts of any other spectra of W are
less than zero [50]. Then, we may naively estimate the
relaxation time 7 of the system from the real spectral gap
below the zero spectrum A4 > 0 as

1
T~—. 1
While this holds true in zero-dimensional systems, the
relaxation times can diverge in one-dimensional systems

even when the A/ is finite. This unexpected divergence is
known as the gap discrepancy problem [51-53], leading to
the O(N) behavior in Table I.

We further assume the spatial translation invariance in
the bulk and locality of the master equation. Denoting the
components of the matrix W by W,,.,,, where n,m =
1, ..., N being the indices of sites and ¢ and v being those of
internal degrees of freedom, one can describe the trans-
lation invariance in the bulk as W,,,..., = W (_)00 for n,
m, ¢, and v, such that (n, o) # (m,v) where W(,_,)0.0, is a
function of n — m, o, and v. The locality of W implies that
there exists some N-independent integer [, such that
Womew = 0 for any ¢ and v whenever |n — m| > .

Winding numbers in classical stochastic processes.—We
first remark that general non-Hermitian topology is char-
acterized by the winding number w := (2zi)~" [#"(d/dk)x
log{det[|W (k) — E] }dk [9], which is defined with a refer-
ence point Ey € C and the matrix W (k),, == >, W,0.5, €*".
Intuitively, w counts how many times each eigenvalue of
W (k) goes around E in the complex plane while k changes
from O to 2z. We note that E, is arbitrarily chosen by a
physical motivation and fixed throughout the argument.
Since we focus on the relaxation to the steady state
corresponding to the zero spectrum, the winding number
around E, = 0 should describe its topological feature.
However, since W(k = 0) always has a zero spectrum, it
is impossible to directly apply the conventional definition
of the winding number to stochastic processes.

Here, to introduce a matrix without a zero spectrum, we
consider a matrix with the scale transformation

(Wﬂ>nm;nu = an;ave/l(n_m)' (2)
Then, we define w, and w_ as the winding numbers around
Ey = 0 calculated at sufficiently small positive and neg-
ative A, respectively:

1 (27 d
W= lim o | %log [det WA (k)] dk. (3)
Finally, we define the winding number w as w :== w, 4+ w_
[54]. Figure 2(a) shows the schematics of the case w # 0.
By counting how many times the blue solid curve (A = +0)
and the red solid curve (4 = —0) go around E, = 0, we
obtain w, = +1 and w_ = 0. Thus, the winding number is
w =1 in Fig. 2(a). Meanwhile, in a symmetric random
walk, we obtain w, = +1 and, thus, w = 0. This calcu-
lation is also valid for the multiband system where multiple
bands can necessarily form a single loop. In general, a
nonzero winding number indicates the emergence of the
NHSE [10-21], which is detected as the drastic change
between the PBC and OBC spectra.

Spectral gap.—We theoretically show that the nonzero
gap in the OBC spectrum of a stochastic process corre-
sponds to the nonzero winding number. The spectral gap is
defined as the difference between the largest and the
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FIG.2. (a) Schematic of the definition of the winding number in
stochastic processes. The black dashed ellipse represents the
spectrum of the original stochastic process; the outer blue (inner
red) ellipse represents the spectrum obtained by a scale trans-
formation with 1 >0 (1 <0). The zero spectrum E =0 is
represented by a yellow circle, and each direction of the
derivative by wavenumber k of spectra is indicated by arrows.
(b) Schematic of the main claim. The black ellipse (blue line)
represents the PBC spectrum (OBC continuum spectra). The blue
cross represents the zero mode. The main claim asserts that the
gap indicated by the green dotted arrow opens in the OBC.

second-largest real parts of spectra. Specifically, we will
prove the following main claim.

Main claim: In any translationally invariant ergodic
classical stochastic process, the OBC spectrum in the
thermodynamic limit N — oo has a nonzero gap below
zero spectrum when the winding number is nonzero and is
gapless when the winding number is zero.

Before going to the proof, we shall first illustrate the basic
concepts of this theorem and show the related numerical
results. Figure 2(b) shows the illustration of the main claim.
It asserts that a gap represented by the green dotted arrow
opens between the zero spectrum and the continuum spectra
in the OBC. We can intuitively understand this gap opening
as the combination of shrinkage of the OBC continuum
spectra and the fixed zero mode due to the Perron-Frobenius
theorem. We note that the spectral gap opens even when the
OBC spectrum can have complex spectra.

We check the correspondence between the winding
number and the spectral gap in simple models, the non-
Hermitian Su-Schrieffer-Heeger (NHSSH) model [55] with
two internal degrees of freedom:

%pn(t)= (8 a(z)+>pn_1(f)+ (;j_ g)l’nﬂ(t)
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FIG. 3. (a) Numerical results of the spectral gaps with the

nonzero winding numbers in (1) NHSSH model and (2) 2-random
walk. The inset shows the transition diagram of each model. The
circles represent the state of the system and the arrows represent
hoppings. The legends indicate the values of fitting parame-
ters . The parameters used are (1) (ay,,a,_,dry,ar_) =
(1.35,0.65,1.35,0.65) and (2) (a;,ay,by,b,)=(10,2,5,2.5).
(b) Numerical results of the spectral gaps with the zero winding
number in (1) NHSSH model and (2) 2-random walk. The
legends show fitting parameters «, a;, and a,, respecti-
vely. The parameters used are (1) (ay_,a_,drp,ar_) =
(1.35,0.65,0.65,1.35) and (2) (ay,as, by, by) = (7,2,5,3).

and the 2-random walk:

d
_pn(t) = alpn—1<t> + blpn+l(t) + a2pn—2(t)

dt
+bypuia(t) = (ay + by 4+ ay + by)p,(1).  (5)

Analyzing these models, we can confirm that both the
internal degrees of freedom and the hopping range have no
effect on the main claim. We note that the parameters of the
models and the time have arbitrary units.

We fit the OBC spectral gaps in the system size N of the
NHSSH model and the 2-random walk with a function
ay +a;(1/N) +a,(1/N)? to estimate the value of the
spectral gap at N — oo (Fig. 3). We confirm that a gap
remains if and only if the winding number is nonzero. This
indicates the correspondence between the winding number
and the spectral gap. We also show this correspondence
analytically in the NHSSH model and numerically in the
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other models with a larger number of internal degrees of
freedom and longer-range hoppings [40].

We also check the robustness of the spectral gap in an
asymmetric random walk: W(k)=ae*+be~*—(a+b).
Here, disorders are introduced as WU»—>W,~]~:= Wiit+4,
|A;j| < Wi;(i # j) so that W,; is also a transition rate
matrix. The OBC spectral gaps remain nonzero under the
existence of these disorders [40].

Sketch of proof.—We separately prove the statements in
the case of the nonzero winding numbers and the zero
winding numbers. To show the nonzero winding number
part, we first slightly generalize the claim from stochastic
processes to general non-Hermitian systems. Note that,
unlike conventional non-Hermitian systems, the on-site
terms at the open boundaries in stochastic processes are
modified from those in the bulk to satisfy the conservation
of probability. However, a previous study [12] has shown
that the OBC continuum spectra are independent of the
boundary terms. Based on the above argument, we genera-
lize the main claim to the following lemma.

Lemma: Suppose that the point £ in the PBC spectrum
is on the outer edge of the PBC spectrum and is not a self-
intersection point. Then, if the first-order derivative by
wavenumber of the PBC spectrum at E is nonzero, E is
not included in the continuum spectra of the OBC.

Intuitively, this lemma asserts the shrinkage of the
spectrum from the PBC to the OBC. If we focus on zero
spectrum in the PBC spectrum of a stochastic process, the
condition of the nonzero first-order derivative is equivalent
to that of the nonzero winding number [40]. Since a
stochastic process always has a zero mode, this lemma
leads to the existence of the OBC spectral gap in a
stochastic process with a nonzero winding number.

To prove the lemma, we utilize the representation of the
OBC continuum spectra using scale transformations [13].
The key idea is to examine the small deformation of the
PBC spectrum with respect to the scale transformation
via the Cauchy-Riemann equation. The remaining zero
winding number part of the main claim is proved by
checking that £ = 0 satisfies the generalized-Brillouin-
zone condition [12]. We describe the details of the proof in
Supplemental Material [40].

Gap discrepancy problem.—We next discuss that the
relaxation time diverges in one-dimensional stochastic
processes under the OBC. Indeed, we rigorously show
the divergence of the relaxation time z(N) [40], using
a similar Lieb-Robinson-like speed limit discussed in
Ref. [56]. Combining this with the main claim, we
conclude that the discrepancy between the nonzero spectral
gap and the divergent relaxation time necessarily occurs in
general one-dimensional stochastic systems with a nonzero
winding number.

We also numerically confirm that the winding number
corresponds to the system-size dependence of the relaxa-
tion time and a characteristic transient behavior called the
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FIG. 4. (a) System-size dependence of relaxation times in (1),
(2) NHSSH model and (3),(4) 2-random walk. The dashed
lines show the O(N) lower bound for (1) and (3). The parameters
used are (1) (ayy,ai_,a,.,a,_)=(1.35,0.65,1.35,0.65),
(2) ((ZH,, aj_,dp, az_) = (135, 065, 065, 135), (3) (al ,ay,
by,by)=(10,2,5,2.5),and (4) (ay,a5,b{,b,)=(7,2,5,3). (b) Time
evolution of the distance to the steady state in the NHSSH model
with nonzero winding number. The parameters used are
(D) (ay4,ay-,ar,a,_)=(1.35,0.65,1.35,0.65) and (2) (a1, a;_,
das, az_) = (13, 07, 26, 14)

cutoff phenomenon. By using the Euler method, we evolve
the initial state with one-site excitation at the opposite end
to the direction of localization of the steady state. We
calculate the 1-norm distance d(1) := ), |Pus(t) — Pres
between the probability distribution of the system p(z) at
time ¢t and the steady state p*. Then, we define the
relaxation time 7(N) in the system size N as the smallest
time ¢ at which d(r) < 0.02 holds. To investigate the
system-size dependence, we fit {z(N)} with the power
function 7(N) = aN?”.

Numerical results in the NHSSH model and the
2-random walk are shown in Fig. 4. The relaxation time
scales O(N?) [O(N)] in the zero (nonzero) winding
number region. Moreover, our rigorous speed limit indeed
provides a lower bound on the relaxation times in nonzero
winding number systems. The O(N?) scaling in the gapless
OBC systems is reminiscent of the Brownian motion [22]
where the standard deviation of the position is proportional
to /7. We note that, while the transition from O(N) to
O(N?) is sharp, there is a finite-size effect on the scaling
[40]. Furthermore, in the transient dynamics of the system
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with the nonzero winding number, the relaxation does not
occur until 7~ 200, from which the relaxation proceeds
rapidly. This indicates the emergence of a cutoff phenome-
non. These results also suggest a correspondence between
the nonzero winding number and characteristic relaxation
phenomena. We note that the cutoff phenomena depend on
the initial state [51,52] and do not occur from a uniform or
random initial condition. The scaling O(N) of the relax-
ation time remains unchanged under the existence of
disorders [40]. This indicates the topological protection,
i.e., the robustness originated from the topology, of the
scaling behavior of the relaxation time.

The exponent of the relaxation time and the emergence
of a cutoff phenomenon can be theoretically inferred from
the expansion coefficients of the initial state with a one-site
excitation [51,52]. If the winding number is nonzero,
because of the NHSE, the expansion coefficients c;(0)
can be exp[O(N)] in the right-eigenvector expansion of a
localized initial state p(0) = >, ¢;(0)|y;) with |y;) being
the jth right eigenvector. Meanwhile, if there is a nonzero
spectral gap AZ€R, it takes O(log[max |c;[]/A4+ 1/AA)
time until the expansion coefficients c;(#) become small
compared to that of the steady state. These two observa-
tions indicate the O(N) dependence of the relaxation
time [40]. Furthermore, since the relaxation does not
proceed much until the expansion coefficient becomes less
than one, we can also expect the presence of the cutoff
phenomena. We note that spectral gaps are directly related
to the scaling of relaxation times through the NHSE in
topological systems. We also discuss the O(N?) scaling of
the relaxation time in a system with a zero winding number
by a similar eigenvector expansion [40].

Discussion.—We showed that the nonzero PBC winding
number corresponds to the nonzero spectral gap under
the OBC in translationally invariant and ergodic one-
dimensional classical stochastic processes. Furthermore,
the nonzero winding number also corresponds to the
system-size dependence of the relaxation time and the
presence of a cutoff phenomenon in the transient regime.

The finite spectral gap seemingly implies the finite
relaxation time (1) in the thermodynamic limit of topo-
logical OBC systems. However, in topological OBC
systems, we obtained the divergent relaxation time with
the unusual system-size dependence instead. Such discrep-
ancy between the divergent relaxation time and the nonzero
spectral gap is termed the gap discrepancy problem, and we
clarified the conditions for gap discrepancy problems from
a topological perspective. While we analyzed lattice mo-
dels, the same correspondence should hold for a Langevin
system, since we can describe such a Langevin dynamics
by using a Fokker-Planck equation [22], which is a
continuous counterpart of a master equation.

The characteristic relaxation phenomena with a nonzero
winding number can be experimentally confirmed using
Brownian particles under a steady flow and active matter

[20,45-49,57], since their directed motions can be modeled
by the nonreciprocal hopping. In fact, the nonreciprocal
lattice models are obtained from discretization of the
Fokker-Planck equations under a steady flow [58]. One
can also realize discrete systems with nonzero winding
numbers by utilizing systems of cell adhesions [48,49] with
a lattice-patterned substrate. We note that the qualitative
difference also emerges in the transient behavior of the bulk
local current [40]. Finally, it is intriguing to extend our
results to higher-dimensional systems. Recent progress on
the non-Bloch band theory [12,13] in higher-dimensional
systems [59-61] can provide insights to this end, while the
boundary-geometry dependence of bulk spectra prevents a
straightforward extension of our results. It also seems to be
hard to construct topological higher-dimensional stochastic
systems, because the existing non-Hermitian topological
systems [13,62-65] utilize complex hopping terms.
Overcoming these points is a challenging future issue.
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