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Bound states in the continuum (BICs), which are spatially localized states with energies lying in the
continuum of extended modes, have been widely investigated in both quantum and classical systems.
Recently, the combination of topological band theory with BICs has led to the creation of topological BICs
that exhibit extraordinary robustness against disorder. However, the previously proposed topological BICs
are only limited in systems with Abelian gauge fields. Whether non-Abelian gauge fields can induce
topological BICs and how to experimentally explore these phenomena remains unresolved. Here, we report
the theoretical and experimental realization of non-Abelian topological BICs, which are generated by the
interplay between two inseparable pseudospins and can coexist in each pseudospin subspace. This unique
characteristic necessitates non-Abelian couplings that lack any Abelian counterparts. Furthermore, the non-
Abelian couplings can also offer a new avenue for constructing topological subspace-induced BICs at bulk
dislocations. Those exotic phenomena are observed by non-Abelian topolectrical circuits. Our results
establish the connection between topological BICs and non-Abelian gauge fields, and serve as the catalyst
for future investigations on non-Abelian topological BICs across different platforms.
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In 1929, von Neumann andWigner proposed the concept
of BICs, which are perfectly localized states coexisting
with extended eigenmodes [1]. Recently, it has been
recognized that BICs arise from wave interference phe-
nomena. Consequently, extensive experimental verifica-
tions have been conducted to explore BICs in various
classical wave systems [2–8]. Notably, BICs always exhibit
enhanced resonances with ultrahigh Q factors, making
them crucial for designing highly efficient devices [9–22].
More recently, the combination of topological band theory
and BICs has led to the emergence of topological BICs
[23–30], where eigenenergies of topological states are
embedded within bulk bands without any hybridization.
Topological BICs possess extraordinary robustness against
disorder and significantly enhance wave manipulation
capabilities. To date, investigations on topological BICs
have been limited to systems with Abelian gauge fields.
In 1954, Yang and Mills proposed non-Abelian gauge

fields [31]. Recently, the concept of non-Abelian synthetic
gauge fields has been extended to real space and parameter
spaces, revealing a plethora of novel phenomena with non-
Abelian characteristics [32–44]. For instance, topological
phases in multiple-band systems can be characterized using
non-Abelian topological charges [34,35]. Non-Abelian
braiding has been experimentally demonstrated in pho-
tonic and acoustic structures [36,37]. Furthermore, the
Hofstadter model incorporating non-Abelian synthetic

gauge fields [43] and the construction of non-Abelian
Chern insulators [44] have showcased exotic physics
arising from the interplay between these gauge fields
and topological matters. Given recent advancements in
both non-Abelian synthetic gauge fields and topological
BICs, it is imperative to explore whether their intersection
yields new physics.
In this work, we present the realization of non-Abelian

topological BICs, and reveal the coexistence of pseudo-
spin-selected non-Abelian BICs in each single pseudospin
subspace. The non-Abelian topological BICs are observed
by topolectrical circuits. Our results extend topological
BICs into the non-Abelian region, and possess potential
applications in robust electronic devices with non-Abelian
features.
The theory of non-Abelian topological BICs.—We con-

sider a two-dimensional (2D) lattice model in the presence
of U(2) non-Abelian coupling matrices, as shown in
Fig. 1(a). There are four sublattices marked ‘a’, ‘b’, ‘c’
and ‘d’ in a single unit. Each sublattice contains two inter-
nal pseudospins j↑ia;b;c;d ¼ ½1; 0�T and j↓ia;b;c;d ¼ ½0; 1�T .
The intracell (intercell) coupling matrices are in the form of
t1σz and it1σy (t2σz and −it2σy), as plotted by black (gray)
solid and dashed arrows. Here, σz and σy are Pauli matrices.
t1 and t2 represent intracell and intercell coupling strengths.
Non-Abelian gauge fields require that at least two hopping
matrices obeying the noncommutative relationship, which
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is ensured by ½σz; σy� ≠ 0. In this case, the Hamiltonian of
the non-Abelian lattice model can be written as

H ¼
XN

m;n¼1

½t1ðb†m;nσzam;n þ c†m;nσzbm;n

þ d†m;nσzcm;n þ a†m;niσydm;nÞ
þ t2ða†m;nþ1σzbm;n þ d†m;nþ1σzcm;n þ b†mþ1;nσzcm;n

− ia†mþ1;nσydm;nÞ þ H:c:�; ð1Þ

where δþm;n ¼ ½δþm;n;1; δ
þ
m;n;2� (δm;n ¼ ½δm;n;1; δm;n;2�T) with

δm;n ¼ am;n; bm;n; cm;n; dm;n are the two-component crea-
tion (annihilation) operators with two pseudospins. N is the
total number of unit cells along m and n axes.
We numerically calculate non-Abelian Bloch bands with

t2 ¼ 10, t1 ¼ 1, as presented in Fig. 1(b). There are five
energy bands belonging to a pair of orthogonally subspaces,
where the pseudospins at four sublattices are represented as
j−id, jþic, j−ib, jþia in one subspace (three blue surfaces),
and as jþid, j−ic, jþib, j−ia in the other subspace (two
green surfaces). The transformed spin basis is defined as
j�ia;b;c;d¼ð1= ffiffiffi

2
p Þðj↑ia;b;c;d�j↓ia;b;c;dÞ. For convenience,

we denote these two subspaces as jþia and j−ia, respec-
tively. The right insets of Fig. 1(b) depict the unit cells of
effective lattice models in two subspaces, demonstrating a
clear correspondence to the 2D SSHmodel in jþia [45] and
the 2D quadrupole topological insulator in j−ia [46].

Further details on these orthogonal subspaces are given
in [47].
To illustrate the existence of non-Abelian topological

states, we numerically calculate the eigenspectrum of the
model (N ¼ 15) with open boundaries, as shown in
Fig. 1(c). The corresponding eigenspectra in j−ia and
jþia are presented in Figs. 1(d) and 1(e). The eigenmodes
marked by green and blue dots correspond to bulk states in
j−ia and jþia, respectively. The red dots represent midgap
eigenmodes, which are 1D edge states. Enlarged views of
the eigenmodes labeled by stars reveal higher-order topo-
logical corner states in both subspaces, where the eigene-
nergies of these topological corner states are embedded
within the bulk states. Spatial profiles of the topological
corner states are shown in insets of Figs. 1(d) and 1(e). It is
evident that these corner-localized topological states do not
hybridize with surrounding bulk states even when there is
no band gap present, corresponding to topological BICs.
Importantly, the decoupling between the topological corner
states and trivial bulk states arises from different physical
origins in each subspace. Specifically, for topological BICs
in jþia, they belong to the same subspace as bulk modes
around zero energy and are protected by C4v symmetry, as
symmetry-protected BICs. On the other hand, for topo-
logical BICs in j−ia, their prohibition from hybridizing
with bulk modes around zero energy stems from ortho-
gonality between two subspaces—a characteristic feature
of topological subspace-induced BICs [10]. We present
numerical evidences to demonstrate the robustness of non-
Abelian topological BICs in the presence of disorder [47].
We note that the lattice model with non-Abelian topological
BICs can also be extended to high-dimensional spaces. The
comprehensive numerical results regarding the existence
and properties of non-Abelian topological BICs in three
dimensions are provided in [47].
The non-Abelian couplings ensure that two pseudospins

are always coupled with each other and can never be
separated under any basis transformation in the pseudospin
subspace. In this case, both of two subspaces, which can be
mapped to the 2D SSH model and quadruple insulator,
encompass two internal pseudospins, making two types of
topological BICs coexist within each single pseudospin
subspace. The inseparability of two pseudospins implies
that two pseudospins collectively generate non-Abelian
topological BICs. Furthermore, we study the influence of a
subspace-coupling term t3ða†m;nσzam;n þ b†m;nσzbm;n þ
c†m;nσzcm;n þ d†m;nσzdm;nÞ on the non-Abelian topological
BICs. Figures 1(f) and 1(g) present numerical results of the
2D Zak phase P ¼ ðPx;PyÞ for the lowest-energy band and
the quadruple momentumQxy of the second or third energy
bands as a function of t1 with t2 ¼ 10 and t3 ¼ 0.5. It is
found that the non-Abelian higher-order topology of both
the lowest-energy band with P ¼ ð0.5; 0.5Þ and second or
third bands with Qxy ¼ 0.5 can still persist in the region
of t1=t2 < 1, even our non-Abelian model become

FIG. 1. The theoretical results of non-Abelian topological
BICs. (a) The lattice model with non-Abelian topological BICs.
(b) Numerical result of non-Abelian Bloch bands. (c) Numerical
result of the eigenspectrum with open boundaries and N ¼ 15.
(d) and (e) The numerical results of eigenspectra in two
subspaces. (f) and (g) Numerical results of the 2D Zak phase
for the lowest-energy band and the quadruple momentum of
second and third energy bands.
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inseparable into a pair of decoupled subspaces [47]. This
phenomenon further illustrates the important significance
of the noncommutativity on non-Abelian topological BICs,
which can coexist in each single pseudospin subspace and
are generated by two inseparable pseudospins.
Observation of non-Abelian topological BICs by electric

circuits.—Motivated by recent experimental breakthroughs
in realizing various quantum states by electric circuits
[48–69], we design electric circuits to observe non-Abelian
topological BICs. Figure 2(a) displays the photograph
image of the fabricated circuit around a unit, where intercell
coupling matrices are illustrated by arrows with different
colors. The diagram of a unit is presented in Fig. 2(b). The
photograph image of the entire circuit with five units along
m and n axes is displayed in [47]. A pair of circuit nodes
connected by the inductor L are considered to form an
effective pseudospin j↑i or j↓i, where voltages at these two
nodes are expressed as V1;δðn;mÞ;i and V2;δðn;mÞ;i , corresponding
to the i th (i ¼ ↑;↓) pseudospin of δ sublattice (δ ¼ a, b, c
and d) in the ðn;mÞ unit. Thus, a single lattice site with two
internal pseudospins is mapped to four circuit nodes
enclosed by the yellow block. Positive and negative
elements in non-Abelian matrices can be realized by
directly and crossly connecting nearest node pairs by
capacitors C1 and C2, which are used for intra- and intercell
couplings. Based on the Kirchhoff equation, we can derive
the eigenequation of the non-Abelian electric circuit [47].
In particular, the probability amplitude of the ith pseudo-
spin for the δ sublattice in the ðn;mÞ unit is mapped to the
voltage ðV1;δðn;mÞ;i − V2;δðn;mÞ;iÞ=

ffiffiffi
2

p
. Eigenenergy is related

to eigenfrequency of the circuit with E ¼ f20=f
2−

2ðC1 þ C2Þ=C1. Non-Abelain coupling matrices possess
the same form as that of the lattice model.

To illustrate the existence of non-Abelian topo-
logical BICs, we measure the local impedance response
of the circuit. Here, circuit elements are taken as
C1 ¼ 1 nF, C2 ¼ 10 nF, and L ¼ 3.1 μH. To excite
eigenstates in one subspace, input voltages at four cir-
cuit nodes of ‘a’ sublattice should in the form
of ðV1;δðn;mÞ;↑ ;V2;δðn;mÞ;↑ ;V1;δðn;mÞ;↓ ;V2;δðn;mÞ;↓Þ ¼ V0ð1;0;−1;0Þ
or V0ð1; 0; 0 − 1Þ. Measured impedance spectra at ‘a’
sublattice in j−ia are presented in Fig. 2(c). Red, green,
and blue lines correspond to results of circuit nodes at
corner, edge, and bulk. It is shown that there are multiple
impedance peaks of the bulk node from 0.64 to
0.67 MHz and 1.29 to 1.54 MHz, being matched to
eigenenergies of two bulk bands. In addition, the low
impedances of the bulk node indicate the existence of a
band gap. The measured impedance peaks of an edge
node appear in such a band gap, showing the excitation
of topological edge states. A large impedance peak of the
corner node appears at 0.862 MHz, which is consistent
with the zero energy. Figure 2(d) displays simulated
impedance responses. A good consistence between sim-
ulations and measurements is obtained, and the larger
width of measured impedance peaks is originated from
the loss effect [47].
Then, we measure the impedance spectra for the circuit

in jþia, as presented in Fig. 2(e). It is found that impedance
responses of both edge and corner nodes are the same with
that in j−ia. This phenomenon is in accordance with the
fact that the eigenenergies of edge and corner states exhibit
identical behavior within two subspaces. Differently, we
find that non-neglected impedance peaks of a bulk node
appear around the zero-energy frequency of 0.862 MHz,
meaning the coexistence of bulk and corner states at the
same eigenfrequency. The corresponding simulation results
are presented in Fig. 2(f), where the loss effect can enlarge
the width of impedance peaks.
In addition, we further measure spatial profiles of the

circuit impedance at 0.862 MHz in two subspaces, as
plotted in Figs. 2(g) and 2(h). It is clearly shown that
impedance distributions both exhibit a strong localization
on four corners in two subspaces, matching to profiles of
topological corner states. We also note that there are
significant impedance responses of bulk nodes, indicating
the coexistence of trivial bulk states and topological corner
states. It is important to note that the topological corner
state is always decoupled with bulk states, which can be
proved by the same amplitude of impedance peaks for the
corner node in two subspaces. These experimental results
clearly demonstrate the observation of non-Abelian topo-
logical BICs.
The theory of non-Abelian topological BICs at the

dislocation defect.—Except for the corner-localized non-
Abelian topological BICs, in this part, we focus on the
exploration of non-Abelian topological BICs at the dis-
location defect. Figure 3(a) presents the schematic diagram

FIG. 2. Observation of non-Abelian topological BICs by
electric circuits. (a) The photograph image of the fabricated
circuit. (b) The schematic diagram of a single unit. (c),(d), and (e),
(f) Measured and simulated impedance spectra of the non-
Abelian electric circuit in j−ia and jþia. (g) and (h) Measured
impedance distributions at 0.835 MHz in two subspaces.
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of a non-Abelian lattice model with a partial dislocation,
which is realized by inserting Nd half units into the system
with Nn and Nm units along the n and m axes. This non-
Abelian partial dislocation is characterized by a Burgers
vector of 0.5m⃗ [70]. The periodic boundary condition is
applied to top and bottom boundaries. It is noted that a part
of the system enclosed by the green block is consistent with
the non-Abelian lattice model sustaining topological BICs
discussed above. In addition, two top corner sites (blue
dots) are weakly coupled with other nearby sites. In this
case, nontrivial topological states are expected to localize
on those defective sites.
To further illustrate the interplay between the non-

Abelian topology and dislocation, we calculate the eigens-
pectrum of the lattice model, as shown in Fig. 3(b). Here,
other parameters are set as t2 ¼ 10, t1 ¼ 1, Nd ¼ 9,
Nn ¼ 10, and Nm ¼ 20. Similarly, the non-Abelian eigens-
pectrum can be decomposed into two parts within different
subspaces, as shown in Figs. 3(c) and 3(d). Here, green and
blue dots are used to label bulk states in j−ia and jþia. Red
dots correspond to 1D boundary states. Purple points mark
0D localized states in band gaps of edge states. Spatial
profiles of these eigenmodes are shown in [47]. Black stars
and squares in three insets display defect-localized eigenm-
odes embedded into bulk states around the zero energy.
Their sums of spatial profiles are displayed in Figs. 3(e) and
3(f). We find that the zero-energy eigenstate in j−ia

exhibits a perfect localization on two defects, manifesting
the appearance of topological BICs at two dislocations.
Differently, the significantly spatial extension appears for
the zero-energy states in jþia. Such a hybridization
between defect-localized topological states and trivial bulk
states is due to the breaking of the C4v symmetry, which is
the prerequisite for the existence of topological BICs in
jþia. In this case, different from non-Abelian topological
BICs at corners, we note that non-Abelian topological BICs
can only exist in j−ia at dislocation defects.
Observation of non-Abelian topological BICs at the

dislocation by electric circuits.—Here, we experimentally
observe non-Abelian topological BICs at the partial dis-
location by electric circuits. As shown in Fig. 4(a), we
present the photograph of the fabricated circuit around the
dislocation, and the entire image (Nd ¼ 4, Nn ¼ 5, and
Nm ¼ 4) is shown in [47]. The corresponding sketch map is
plotted in Fig. 4(b). It is worth noting that the periodic
boundary condition is applied to top and bottom boundaries.
And, the method for realizing the non-Abelian coupling
matrices is the same as that used in the circuit with corner-
localized topological BICs. The derivation of the eigeneq-
uation for the circuit with a dislocation is provided in [47]. It
is noted that the relationship between the eigenenergy and
eigenfrequency of the designed electric circuit is in the form
of E ¼ f20=f

2 − ðC1 þ 3C2Þ=C1.
Then, we measure impedance responses at the bulk,

edge, and defect nodes [illustrated in the inset of Fig. 4(c)]

FIG. 3. The theory of non-Abelian topological BICs at
dislocation defect. (a). The schematic diagram of the non-
Abelian lattice model with a partial dislocation. (b) The calcu-
lated eigenspectrum of the non-Abelian lattice model with a
partial dislocation. (c),(e) and (d),(f) Numerical results of
eigenspectra and spatial profiles of defect-localized eigenmodes
in j−ia and jþia.

FIG. 4. Observation of non-Abelian topological BICs at dis-
locations. (a) The photograph image of the fabricated circuit
around the dislocation. (b) The sketch map of electric circuit
around the dislocation. (c),(d) and (e),(f) Measured and simulated
impedance spectra of the non-Abelian electric circuit in j−ia and
jþia. (g) and (h) Measured impedance distributions at
0.725 MHz in j−ia and jþia.
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to detect non-Abelian topological BICs at the dislocation
defect. Here, the values ofC1,C2, and L are identical to that
used in Fig. 2. Figure 4(c) presents experimental impedance
spectra in j−ia. We can see that there are many impedance
peaks of the bulk node (the red line) in two frequency
ranges of [0.593, 0.611 MHz] and [0.951, 1.023 MHz],
corresponding to the excitation of bulk states. And, a bulk
gap region with near-zero impedances exists between these
two frequency ranges. In such a bulk gap, the edge node
possesses the strong impedance response. In addition, a
large impedance peak of the dislocation appears in the
common gap region of bulk and edge nodes (the red
region), indicating the excitation of topological BICs. The
frequency of such an impedance peak (0.725 MHz) has a
good correspondence with the zero-energy mode in the
mapped lattice model. The associated simulation results are
shown in Fig. 4(d), where the larger width of measured
impedance peaks results from the loss effect [47].
Next, impedance responses at the bulk, edge, and defect

nodes are measured in the subspace of jþia, as shown in
Fig. 4(e). We find that the impedance response of the edge
node is the same to that in j−ia, consisting with the local
density of states at the edge node in two subspaces. It is worth
noting that the dislocation and nodes exhibit nearly equal-
valued impedance peaks around 0.725MHz. In addition, the
corresponding peak value is much smaller than that of the
dislocation in j−ia. These phenomena clearly show that
the bulk polarization-induced topological state in jþia can
leak into the nearby bulk region at the dislocation defect,
consistant with the distribution of the defect-localized eigen-
state in Fig. 3(f). These experimental impedance spectra are
also matched to simulations, as shown in Fig. 4(f).
To further illustrate spatial profiles at the zero-energy

frequency, in Figs. 4(e) and 4(h), we measure impedance
distributions at 0.725MHz in j−ia and jþia. It is found that
the strong localization of the impedance profile appears at
dislocation in j−ia. While, as for the measured impedance
profile in jþia, the impedance amplitudes at dislocation are
significantly reduced, indicating the hybridization between
defect states and bulk states. These experimental results
clearly show that the dislocation can only trigger the
appearance of topological BICs in the subspace with
nontrivial quadrupole polarization.
In conclusion, we have presented the theoretical design

and experimental realization of non-Abelian topological
BICs. Our findings demonstrate that non-Abelian cou-
plings can give rise to pseudospin-selected topological
BICs in a single pseudospin subspace. Furthermore, these
non-Abelian couplings provide a novel approach for
constructing BICs induced by topological subspaces, dis-
tinct from previous methods limited to engineering cou-
pling between identical U(1) Abelian models. Additionally,
we have investigated the interplay between dislocation
defects and non-Abelian couplings and discovered that
the topological dislocation state can be embedded into

non-Abelian bulk bands as a BIC. These results highlight
how incorporating non-Abelian couplings offers new
physical insights into both properties and construction
methods of topological BICs. In experiments, we have
fabricated topolectrical circuits to observe non-Abelian
topological BICs. The manipulation of electronic signals
in the form of non-Abelian topological BICs holds prom-
ising prospects for applications in the field of electronics,
such as the design of circuit sensors with strong robustness.
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