
Kardar-Parisi-Zhang Physics in the Density Fluctuations
of Localized Two-Dimensional Wave Packets

Sen Mu,1,* Jiangbin Gong,1,2,3,4,† and Gabriel Lemarié 1,2,3,5,‡
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We identify the key features of Kardar-Parisi-Zhang (KPZ) universality class in the fluctuations of the
wave density logarithm in a two-dimensional Anderson localized wave packet. In our numerical analysis,
the fluctuations are found to exhibit an algebraic scaling with distance characterized by an exponent of 1=3,
and a Tracy-Widom probability distribution of the fluctuations. Additionally, within a directed polymer
picture of KPZ physics, we identify the dominant contribution of a directed path to the wave packet density
and find that its transverse fluctuations are characterized by a roughness exponent 2=3. Leveraging on this
connection with KPZ physics, we verify that an Anderson localized wave packet in 2D exhibits a stretched
exponential correction to its well-known exponential localization.
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Introduction.—Universality of fluctuations, a remarkable
phenomenon pervading physics, is exemplified by the
central limit theorem, which characterizes the convergence
to a normal distribution for the sum of independent random
variables, and describes for instance the behavior of particles
in Brownian motion [1–3]. Another example is the Kardar-
Parisi-Zhang (KPZ) physics, a universal framework that is
relevant to diverse processes ranging from interface growth
to directed polymers [4–8]. While initially associated with
classical systems, recent numerical and experimental inves-
tigations have revealed KPZ physics in quantum systems,
including one-dimensional quantum magnets [9–11], ran-
dom unitary circuits [12], and driven-dissipative quantum
fluids [13].
Anderson localization is a phenomenon where the wave

function of a particle becomes localized due to disorder,
hindering its diffusion [14–16]. Universal fluctuations
play a key role in different aspects of this phenomenon,
including universal conductance fluctuations [17,18], ran-
dom matrix statistics [19], log-normal distributions in
one-dimensional localized systems [20] and multifractal
statistics in the critical regime of the Anderson transition
[21–25] of diverse observables.
While one-dimensional Anderson localization is exactly

solvable [19,22,26–29], understanding higher-dimensional
cases and fluctuations in the localized regime remains a
challenge. Theoretically, one can start from the regime of
strong disorder and high dimensions and use the forward
scattering approximation, which suggests an analogy with
directed polymers [30–36]. However, this approximation is

uncontrolled beyond the regime of strong disorder and
predicts a transition even in dimensions one and two,
contradicting established properties. Numerical simulations
in two dimensions reveal an analogy with KPZ physics for
a specific observable, namely, the conductance at zero
temperature. It exhibits fluctuations belonging to the KPZ
universality class [37–40] and displays glassy properties
akin to directed polymers [41]. However, electron transport
in the localized regime is influenced by temperature and
interactions, leading to observations of electron glass
physics rather than KPZ physics in experiments [42–51].
Recent experimental studies on Anderson localization

utilizing cold atoms, light waves, and ultrasounds [52–62]
have shed light on another type of transport, namely the
expansion of a wave packet. This fresh perspective offers an
in situ and dynamical depiction of localization that differs
from the conductance. Furthermore, localization in these
platforms can be finely controlled, allowing for examination
of a regime in which interaction and temperature effects are
negligible. For example, cold atoms have provided an experi-
mental confirmation of a three-dimensional Andersonmetal-
insulator transition, with a critical exponent that aligns with
numerical predictions [63,64]. We are thus motivated to
study the universality of directly measurable fluctuations in
the spatial profile of wave packets in Anderson localized
systems. This problem is distinctly separate from conduct-
ance fluctuations, as evidenced by extensive research
focused on wave packets. Importantly, our Letter establishes
a clear and strong connection between fluctuations of spatial
profile of wave packets with KPZ physics.
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We examine the fluctuations of the wave density of an
exponentially localized wave packet in two dimensions.
Using exact numerical simulations, we demonstrate that
the fluctuations of the logarithm of the wave density
correspond to the height of a rough surface in the KPZ
universality class [65]; see Fig. 1. We find that these
fluctuations scale algebraically with distance, with a
fluctuation exponent of 1=3, and identify the dominant
contributing paths and their transverse fluctuations char-
acterized by a roughness exponent of 2=3. Moreover, we
demonstrate that the distribution of the logarithm of the
wave density follows the Tracy-Widom distribution. These
findings firmly establish that two-dimensional localized
wave packets belong to the KPZ universality class.
Leveraging the well-established analytical knowledge of
KPZ physics [7,66–70] offers valuable new perspectives on
the intricate characteristics of Anderson localization in two
dimensions. It not only sheds light on the underlying
mechanisms but also reveals intriguing features, such as
the presence of a stretched exponential correction to the
exponential behavior of localization in two dimensions.
Model.—In order to describe the unitary dynamics of a

wave packet in a two-dimensional discrete square lattice,
we have used a variant of the quantum kicked rotor [71–75]
described by the following quantum map:

jψ tþ1i ¼ Ûjψ ti ¼ e−iKVðk̂Þe−iWðr̂Þjψ ti: ð1Þ

This quantum map evolves the wave packet state jψ ti at
time t to the state at time tþ 1 by applying an evolution
operator Û written as the product of an operator e−iWðr̂Þ of
random on-site phases and a kick operator e−iKVðk̂Þ playing
the role of hopping amplitudes in the Anderson model [72].

Here, r ¼ ðx; yÞ denotes site position on the discrete lattice
and k ¼ ðkx; kyÞ with kx; ky ∈ ½−π; πÞ, the wave vector
reciprocal to the lattice: ψ tðkÞ ¼

P
r ψ tðrÞe−ik·r. The ran-

dom on-site phases WðrÞ are independent, identically
distributed uniformly in the interval ½−π; π�, and the kick
operator e−iKVðk̂Þ is parametrized by the kicking strength K
and VðkÞ ¼ cos kx þ cos ky þ ϵ cos kx cos ky with ϵ a non-
zero coupling parameter. The quantum kicked rotor has
been instrumental in understanding phenomena such as
Anderson localization and the Anderson transition, both
theoretically and experimentally [52,53,62,63,71–77].
In this Letter, the initial condition of the wave packet

plays an important role. We consider two types: peaked
either at a particular site on the square lattice, Eq. (2), or a
line on the lattice, Eq. (3). The two initial conditions are
referred to as circular and flat initial conditions, respec-
tively, in the context of KPZ physics [65]. More specifi-
cally, such two types of initial states are

circular∶ ψ0ðrÞ ¼ δðrÞ; r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
; ð2Þ

flat∶ ψ0ðx; kyÞ ¼ δðxÞδðkyÞ; r≡ x; ð3Þ
where r represents the distance in the localization direction
along which the wave packet decays exponentially from the
initial condition.
Approximate mapping to a directed polymer problem.—

The directed polymer (DP) problem in (1þ 1) dimensions is
a rare example of an analytically solvable model belonging
to the KPZ universality class; see, e.g., [67,68,70]. We will
employ the forward scattering approximation [30,31,33] to
establish an approximate mapping from two-dimensional
localized wave packets to a (1þ 1)-dimensional DP model
in the strong disorder regime, corresponding to a small
kicking strength (K ≪ 1) in Eq. (1). Starting with a circular
initial condition, Eq. (2), we express the wave packet ψ tðrÞ
using a path integral representation:

ψ tðrÞ ¼ hrjÛtj0i ¼
X
rt−1

…
X
r1

hrjÛjrt−1i…hr1jÛj0i: ð4Þ

When K ≪ 1, hoppings are mainly limited to nearest
neighbors with a small amplitude jJ0j ≪ 1. Consequently,
we can approximate the path integral for ψ tðrÞ by keeping
only the shortest, directed paths denoted DP. In the limit of
large times, we find (see SM [78])

ψ tðrÞ ≈ J0r
X
DP

Y
rj ∈DP

e−W̃ðrjÞ ð5Þ

In this equation, W̃ðrjÞ are complex numbers that have a
direct relationship with WðrjÞ. The resulting expression
resembles the partition function of a DP with a complex on-
site disorder. In dimension two, numerical evidence shows
that the scaling properties of such complex DP problem are

(a) (b)

FIG. 1. The logarithm of the wave density ln jψðrÞj2 of a 2D
localized wave packet exhibits similar growth with distance r as a
rough surface in the Kardar-Parisi-Zhang universality class [65].
We present the results of long-time evolution for two different
initial conditions: (a) a “circular” peak at 0, Eq. (2), and (b) a
“flat” line along y at x ¼ 0, Eq. (3). We plot the transformed
coordinates ½− ln jψðrÞj2ðx=rÞ;− ln jψðrÞj2ðy=rÞ� in (a) and
ðy;− ln jψðx ¼ r; yÞj2Þ in (b), with different colors representing
various distances r. Numerical simulations were conducted using
model Eq. (1), a variant of the kicked rotor, with system size
600 × 600, kick strength K ¼ 1.21, coupling ϵ ¼ 0.1, and
evolution time t ¼ 104.
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identical to those with real disorder [79–85], confirming
their belonging to the KPZ universality class. In the
following, we will refine our analysis beyond the previous
uncontrolled approximation and beyond the strong disorder
regime (K ≪ 1), now employing exact numerical simula-
tions (for K ≈ 1) to conclusively establish the connection
with the KPZ universality class.
Exponential localization as a rough surface growth.—

Let us investigate the spatial properties of the wave density
jψ tðrÞj2 after evolving our initial state, Eq. (2) or Eq. (3),
for times t ≫ tloc much larger than the localization time
(see SM [78]), when the envelope of the wave packet is
stationary. We will postpone the discussion on the effects of
time and omit the label of time for the wave density in the
following, i.e., jψðrÞj2 ≡ jψ tðrÞj2. Consider the logarithm
of the wave density ln jψðrÞj2 at a distance r from the initial
location. The analogy that we have drawn in the previous
section leads us to interpret − ln jψðrÞj2 as the analog of the
height function h of a growing rough surface (or, equiv-
alently, as the free energy of a directed polymer problem),
where the distance r along the localization direction in our
model is understood as the time in the surface growth (or
directed polymer) process. In Fig. 1, we present this effective
growth for both circular, Eq. (2), and flat, Eq. (3), initial
conditions.The striking resemblance between these plots and
experimental observations in liquid crystal nematics [65]will
be quantitatively validated in the following.
Given the KPZ physics analogy and insights from one-

dimensional Anderson localization [20], we anticipate the
logarithm of the wave packet density jψðrÞj2 to behave as
follows [38,65,86,87]:

ln jψðrÞj2 ≈
r≫ξ

−
2r
ξ
þ
�
r
ξ

�
β

ΓχðrÞ þ Λ; ð6Þ

where χ is a random variable of order 1, Γ and Λ are
constants. The first term corresponds to exponential locali-
zation, with ξ the localization length, while the second term
captures fluctuations with a fluctuation growth exponent β.
In two dimensions, β differs from the known value 1=2 for
Anderson localization in one dimension [20]. Figure 2
shows the behavior of the standard deviation σ½ln jψðrÞj2�
of ln jψðrÞj2, which grows algebraically with r as σ ∼ rβ.
The fluctuation exponent β ≈ 1=3, consistent with the KPZ
universality class.
Optimal path and roughness exponent.—The optimal

trajectory of a directed polymer in a random medium
reveals important insights into the system’s dynamics and
glassy properties [86,88,89]. By extending the approach in
[41], we can visualize the optimal path associated with a
wave packet localized in a specific disorder configuration.
This is achieved by examining the response of the wave
density at r to a local perturbation of the disorder at r0,
where the perturbation involves shifting the on-site phase
Wðr0Þ by π. We quantify this response using

ρrðr0Þ≡
���jψ̃ r0 ðrÞj2 − jψðrÞj2

���
jψðrÞj2 ; ð7Þ

which measures the difference between the wave densities
with or without perturbation (jψ̃ r0 ðrÞj2 or jψðrÞj2, res-
pectively). In the strongly localized regime (r ≫ ξ), the
response becomes highly inhomogeneous, concentrated
along a specific path that depends on both the disorder
configuration, initial condition, and final point r. In
Fig. 3(a), we illustrate such a path, where the red dot
represents the final site r, and the green line corresponds to
the flat initial condition along the line x ¼ 0 [Eq. (3)].
Let us delve deeper into the properties of the optimal

path. Considering the same flat initial condition, we focus
on the transverse position Y at x ¼ 0 of the optimal path for
the wave packet at r ¼ ðx; 0Þ. The calculation of Y relies on
the response ρr at x0 ¼ 0, given by

Y ¼
P

y0 y
0ρrð0; y0ÞP

y0 ρrð0; y0Þ
; ð8Þ

where ρrð0; y0Þ=
P

y0 ρrð0; y0Þ represents the normalized
probability distribution of the optimal trajectory. In the
directed polymer problem, the optimal path arises from a
global optimization over the disorder, resulting in a path
that exhibits more wandering compared to a simple random
walk. This wandering behavior is characterized by the
roughness exponent ζ, which relates the standard deviation
of the expected transverse position to the distance r from
the initial condition [Eq. (3)]: σ½Y� ∼ rζ. Numerical results
on the roughness exponent are presented in Fig. 3(b),

FIG. 2. We examine the scaling of fluctuations in ln jψðrÞj2
with distance r from two initial conditions: (a) circular initial
condition, Eq. (2), and (b) flat initial condition, Eq. (3). The
standard deviation σ½ln jψðrÞj2� is plotted along the diagonal of
the square lattice x ¼ y (with distance r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
) in (a), and

along the line along x at y ¼ 0 (with distance r ¼ x) in (b). The
dashed line represents the expected algebraic behavior
σ½ln jψðrÞj2� ∼ r1=3 based on the analogy with KPZ physics.
Numerical simulations are performed on system Eq. (1) with size
300 × 300, kick strength K ¼ 1.04, coupling ϵ ¼ 0.1, and
evolution time t ¼ 103. For both initial conditions, 105 disorder
realizations are considered.
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clearly indicating ζ ≈ 2=3. This discovery shows differing
wave packet fluctuations in the localization (time) and
transverse (space within KPZ physics) directions. This
asymmetry, a nontrivial signature of KPZ physics, arises
from Anderson localization itself.
Tracy-Widom distribution and the shape of a 2D

localized wave packet.—Drawing from the analogy with
the DP problem, the random variable χ in Eq. (6) is expected
to follow a universal distribution function. Specifically,
for the circular initial condition, it should obey the Tracy-
Widom (TW) distribution of the Gaussian unitary ensemble
(GUE). In Fig. 4(a), we present the distribution of χ̃ðrÞ ¼
ðln jψðrÞj2 − hln jψðrÞj2iÞ=σ½ln jψðrÞj2� alongside the GUE
TWdistributionPTWðχ̃Þ, rescaled to have zeromean and unit
standard deviation. We observe a good agreement between
the two.
This makes it possible to determine the shape of a

localized wave packet. The form of the typical wave
density follows from an average of the result in Eq. (6):

hln jψðrÞj2i ≈
r≫ξ

−
2r
ξ
þ
�
r
ξ

�
1=3

Γμþ Λ; ð9Þ

where h…i denotes disorder averaging at fixed r and μ ≈
−1.77 is the nonzero mean of the GUE TW distribution.
Figure 4(b) shows a very good agreement between this
prediction Eq. (9) and numerical data for hln jψðrÞj2i at
large r ≫ ξ.
The average wave density hjψðrÞj2i can be determined

by considering the typical wave packet and the fluctua-
tions around it, following the GUE TW distribution
PTWðχ̃Þ. This average wave packet profile is experimentally

accessible, for instance, with cold atoms; see, e.g.,
[55,62,76]. After some algebraic manipulations (see SM
[78] for details), we obtain the approximation

hjψðrÞj2i ≈
r≫ξ

ehln jψðrÞj2i
Z

∞

−∞
dχ̃eχ̃σ½ln jψðrÞj2�PTWðχ̃Þ

≈ e−
2r
ξþðrξÞ1=3 Γ0þðrξÞ2=3Γ00þΛ0

; ð10Þ
where σ½ln jψðrÞj2� ∼ r1=3, and new constants Γ0, Γ00, and Λ0
are introduced. Figure 4(b) compares this prediction with
numerical data for hjψðrÞj2i. Notably, the values of Γ0, Γ00,
and Λ0 are not fitted from hjψðrÞj2i, but instead determined
from the typical wave packet and the GUE TW distribu-
tion PTWðχ̃Þ.
The excellent agreement between Eqs. (9), (10) and the

numerical data predicts a stretched exponential correction
to the exponential decay of 2D localization; see SM [78] for
more details. Notably, the absence of this stretched expo-
nential correction in 1D Anderson localization, where
Gaussian fluctuations of the logarithm of the wave density
have zero average [20], underscores its distinctive signature
in 2D localization.
Conclusion.—In this Letter, we have unveiled previously

unknown and highly significant features of two-dimensional
Anderson localization of wave packets through an analogy
with KPZ physics. Notably, we have discovered that the

(a) (b)

FIG. 3. (a) The optimal path for a wave packet originating from
a flat initial condition, Eq. (3), represented by the green line along
y at x ¼ 0, propagates to the final site r ¼ ðx ¼ 100; y ¼ 0Þ
shown as the red dot. The local response ρrðr0Þ, Eq. (7), is
displayed as a color plot, with ρrðr0Þ ¼ 1 if ρrðr0Þ > 1 for better
visibility. (b) The scaling of the standard deviation σ½Y� of the
transverse position Y, Eq. (8), of the optimal path is shown as a
function of the distance r ¼ x from the flat initial condition,
Eq. (3). The dashed line represents the expected algebraic
behavior σ½Y� ∼ r2=3 based on KPZ physics. The numerical
simulations employ the model described by Eq. (1) with a
system size of 300 × 300, kick strength K ¼ 1.04, coupling
ϵ ¼ 0.1, evolution time t ¼ 103, and an averaging over 104

disorder realizations.

(a) (b)

FIG. 4. Tracy-Widom distribution and the shape of a 2D
localized wave packet. (a) The distribution of the rescaled wave
density χ̃, defined as ðln jψðrÞj2 − hln jψðrÞj2iÞ=σ½ln jψðrÞj2�,
exhibits good agreement with the GUE Tracy-Widom distribution
(magenta line) for the circular initial condition, Eq. (3). Crosses
of different colors represent different distances r from the initial
condition, and their collapse onto the Tracy-Widom distribution
confirms the scaling behavior given by Eq. (6). (b) The typical
wave density hln jψðrÞj2i (lower violet line) and the logarithm of
the average wave density lnhjψðrÞj2i (upper orange line) are
displayed. The red dashed line represents a fit using Eq. (9) with
ξ ≈ 1.7, Γ ≈ −4.0, and Λ ≈ −15.2. The upper black dashed line
represents Eq. (10) with Γ0 ≈ 2.0, Γ00 ≈ 2.4, and Λ0 ≈ −9.9,
determined from the typical wave density and the GUE Tracy-
Widom distribution. Numerical data is obtained from the model
described by Eq. (1), considering r on the diagonal x ¼ y of a
square lattice with size 300 × 300. The simulations employ a kick
strength of K ¼ 1.0, coupling ϵ ¼ 0.1, an evolution time of
t ¼ 103, and involve 106 disorder realizations.
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fluctuations of the logarithm of the wave density exhibit an
algebraic growth with the KPZ growth exponent of 1=3,
providing a stretched exponential correction to the prevailing
exponential localization behavior in two dimensions.
Compared to the unrealistic conditions for experiments
in solid-state devices, such as zero-temperature and non-
interacting systems required for conductance fluctuations
exhibiting KPZ physics [37–41], our findings have direct
experimental accessibility with cold atom systems and
classical waves [29,52,55,58,59,61–63,76,90], opening up
excitingopportunities for experimental validation and further
exploration. Moreover, our extensive numerical results
demonstrate that the critical exponents and statistical dis-
tributions governing KPZ physics are universally present in
localized wave packets in two dimensions. Indeed, while our
computational results are based on a variant of the kicked
rotor, we have confirmed the validity of our observations in
the two-dimensional Anderson model (see SM [78]). We
have omitted time effects from our description. In the regime
of large times t ≫ tloc, the spatial distributions reach a
stationary state, which implies that our findings are relevant
for any fixed time t ≫ tloc. However, in addition to the spatial
perspective, thewave packet observable also provides insight
into the temporal fluctuations. This opens up intriguing
possibilities for investigating the dynamical glassy properties
inherent in the DP problem [91], including phenomena such
as aging [92,93]. The integration of KPZ and directed
polymer physics insights holds also great promise in shed-
ding light on the as-yet-unclear aspects of Anderson locali-
zation in high dimensions [94–97].
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