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The superconducting diode effect refers to an asymmetry in the critical supercurrent Jcðn̂Þ along
opposite directions, Jcðn̂Þ ≠ Jcð−n̂Þ. While the basic symmetry requirements for this effect are known,
it is, for junction-free systems, difficult to capture within current theoretical models the large current
asymmetries Jcðn̂Þ=Jcð−n̂Þ recently observed in experiment. We here propose and develop a theory for an
enhancement mechanism of the diode effect arising from spontaneous symmetry breaking. We show—both
within a phenomenological and a microscopic theory—that there is a coupling of the supercurrent and
the underlying symmetry-breaking order parameter. This coupling can enhance the current asymmetry
significantly. Our work might not only provide a possible explanation for recent experiments on trilayer
graphene but also pave the way for future realizations of the superconducting diode effect with large current
asymmetries.
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Diodes, which are characterized by a highly asymmetric
relation between resistance R and current J, RðJÞ ≠ Rð−JÞ,
are an integral part of modern-day electronics. A super-
conductor where the critical current Jc is different along
opposite directions, Jcðn̂Þ > Jcð−n̂Þ, can realize a super-
conducting analog of a diode in the sense that Rð−Jn̂Þ ≠
RðJn̂Þ ¼ 0, if Jcð−n̂Þ < J < Jcðn̂Þ. While asymmetries in
superconducting current-voltage relations in low-symmetry
superconductors had been observed before (see, e.g., [1–3]),
the potential technological applications of and funda-
mental scientific questions associated with this supercon-
ducting diode effect (SDE) have attracted significant
experimental [4–28] and theoretical [29–59] attention in
recent years; this led to a variety of different realizations
both in tunnel-junction setups [10–24] and in single junction-
free superconducting phases [4–9,25–28]. Importantly,
critical current asymmetries in superconductors require
broken time-reversal symmetry (TRS), which can not
only be achieved by applying a magnetic field [4–17],
a current [21,22], or magnetic proximity [23,24,27,28],
but also result from spontaneous TRS breaking in a junc-
tion [18–20] or homogeneous superconductor [25,26];
aside from the fundamental interest in the competition of
magnetism and superconductivity in a single electron
liquid, this might also be useful for integrated designs
where external fields are not practical. Another crucial
aspect for applications is the degree of current asymmetry,
conveniently measured by the dimensionless diode effi-
ciency ηðn̂Þ ¼ jJcðn̂Þ − Jcð−n̂Þj=½Jcðn̂Þ þ Jcð−n̂Þ�. A large
efficiency, as close to 1 as possible, is desirable for the
system to operate as a superconducting diode without
having to fine-tune the current magnitude.

In this Letter, we propose and demonstrate theoretically
an enhancement mechanism for the SDE efficiency η,
specifically for systems with spontaneously broken TRS.
While it is clear by symmetry that the condensation of a
time-reversal-odd order parameter can affect the critical
supercurrent and induce a SDE, we here demonstrate that
the supercurrent also couples back to the underlying
symmetry-breaking order parameter. If superconductivity
and the TRS-breaking order have similar energy scales, this
“backaction” can be quite large and, as we demonstrate, can
enhance η significantly. Although this mechanism is more
generally valid and should apply to different models and
forms of the time-reversal-odd order parameter, we use a
model inspired by graphene moiré systems; this is moti-
vated by Ref. [25] where a junction-free sample of twisted
trilayer graphene was studied and a zero-field SDE with a
particularly large η was observed, and by Ref. [34], where
it was shown that valley imbalance is the most natural
normal-state instability inducing the SDE at zero field. Our
work, thus, both provides a possible route to explaining
the large η of Ref. [25] and paves the way for the design
of zero-field superconducting diodes with large current
asymmetries.
Model for SDE.—As motivated above, we study an

electronic Hamiltonian of the form

Hc ¼
X
k;ν

ξk;νc
†
k;νck;ν þΦV

X
k;ν

νc†k;νck;ν

þ
X
k;q

�
Δqc

†
kþq=2;þc

†
−kþq=2;− þ H:c:

�
; ð1Þ
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where c†k;ν creates an electron in valley ν ¼ � and at
momentum k. The three terms in Hc capture the non-
interacting band structure of the nearly flat bands at the
chemical potential, which obey ξk;ν ¼ ξ−k;−ν ≡ ξk·ν due to
TRS, the coupling of the TRS-breaking normal state order
(in our case, valley imbalance ΦV) and of the super-
conducting order parameter to the electrons, respectively.
We suppressed the spin index in Eq. (1) and in the
following, but emphasize that our results apply both for
spin polarized bands [60,61] and in the spinful case.
To stabilize superconductivity, we take an attractive

(gc > 0) interaction Hgc ¼−ðgc=2Þ
P

q;ν;ν0C
†
q;ν;ν0Cq;ν;ν0 with

Cq;ν;ν0 ¼
P

k ckþq=2;νc−kþq=2;ν0 and perform a decoupling
in the intervalley pairing channel, hCq;ν;ν0 i ¼ νδν;−ν0Δq=gc;
we focus on intervalley pairing because it is favored by
TRS for a finite range of ΦV [34]. For valley polarization,
we use Hgv ¼ −gv

P
k;k0;ν;ν0 νν

0c†k;νck;νc
†
k0;ν0ck0;ν0 , and the

resulting mean-field Hamiltonian reads as HS ¼ HcþP
q jΔqj2=gc þΦ2

V=gv. While we will compute the super-
current systematically below, we start for illustration pur-
poses with a semiphenomenological approach. Integrating
out the electrons inHS and expanding up to quartic order in
Δq, the change δF S ≔ F ½Δq;ΦV � − F ½0;ΦV � of the free
energy with superconductivity reads as

δF S ∼
X
q

aSq jΔqj2 þ bS
X
qi

Δ�
q1Δ

�
q2Δq3Δq4δq1þq2;q3þq4 ;

where we neglected the momentum dependence of the
quartic term. It holds aSq ¼ 1=gc − Γq with [34]

Γq ¼
1

2N

X
k

tanh Ek;q;þ
2T þ tanh Ek;q;−

2T

Ek;q;þ þ Ek;q;−
; ð2Þ

where N is the number of unit cells and Ek;q;ν ¼ ξkþνq=2 þ
νΦV encodes the normal-state dispersion, associated with
the first line of Eq. (1).
The equilibrium superconducting state at given ΦV is

found by minimizing δF S. Restricting the analysis to
single-q states, Δq ∝ δq;q0 , the value of q0 is determined
by the minimum of aSq (the maximum of Γq). As expected,
the current JðqÞ ¼ 2eΔqvq, vq ¼ ∇qaSq [30,31,34] vanishes
in equilibrium, Jðq0Þ ¼ 0; a supercurrent-carrying state,
therefore, corresponds to pairing with q ≠ q0. We define
the critical current Jcðn̂Þ along n̂ as the maximal magni-
tude of JðqÞ oriented along n̂. Therefore, we allowed
for finite q in Eq. (1) not only to capture the potential
finite-momentum pairing (q0 ≠ 0) for sufficiently large
ΦV [14,34], but also to compute the critical current by
imposing a certain q ≠ q0.
For ΦV ¼ 0, it holds that Ek;q;ν ¼ Ek;−q;−ν and thus Γq ¼

Γ−q in Eq. (2). This, in turn, immediately implies JðqÞ ¼
−Jð−qÞ and Jcðn̂Þ ¼ Jcð−n̂Þ, i.e., there is no SDE. This

was expected as a consequence of TRS or twofold rotational
symmetry, C2z, for that matter—both have to be broken to
get Jcðn̂Þ ≠ Jcð−n̂Þ. This is achieved by ΦV ≠ 0 [34],
leading to a finite SDE efficiency, η ¼ maxn̂f½jJcðn̂Þ−
Jcð−n̂Þj�=½Jcðn̂Þ þ Jcð−n̂Þ�g∈ ½0; 1�. Although generically
nonzero by symmetry, it does not guarantee that η can reach
high values corresponding to large current asymmetries,
Jcðn̂Þ ≫ Jcð−n̂Þ—a property desirable for applications of
the SDE and relevant fundamentally to understand recent
experiments [25].
Phenomenological coupling.—The main result of this

work is that η can be significantly enhanced by taking into
account that the strength of the valley polarization is
affected by the supercurrent or, put differently, ΦV entering
Ek;q;ν in Eq. (2) also depends on the center of mass
momentum q of the Cooper pairs, ΦV → ΦVðqÞ. Post-
poning a systematic microscopic computation that treatsΔq

and ΦVðqÞ on equal footing, we start with a simpler
phenomenological analysis. In this simplified description,
we determine ΦVðqÞ by minimizing the free energy

FV ∼ aΦΦ2
V þ bΦΦ4

V þΦV

X
q

jΔqj2½FðqÞ þ α00ΦV � ð3Þ

with respect to ΦV , where terms involving fifth and higher
powers of the order parameters ΦV , Δq are neglected. The
first two terms in FV determine the value of ΦV in the
absence of superconductivity. Meanwhile, the remaining
terms in Eq. (3) capture the key coupling between the
momentum of the Cooper pairs and ΦV . For the last term,
we have α00 > 0, which can be shown by integrating out the
electrons in Eq. (1), and captures that increasing (decreas-
ing) the superconducting order parameter suppresses
(enhances) ΦV . The other term with FðqÞ ¼ −Fð−qÞ
describes the fact that superconductivity at finite q breaks
TRS and C2z and can, hence, couple to the first power
of ΦV . Motivated by twisted graphene systems, which
exhibit C3z rotational symmetry, we write

FðqÞ ¼ αêϵ · XðqÞ þ α0χðqÞ; ð4Þ

where XðqÞ and χðqÞ are real valued, periodic on the
Brillouin zone, and odd in q, and transform as a vector and
scalar under C3z, respectively. We use the leading lattice
harmonics for XðqÞ and χðqÞ (see the Supplemental
Material [62] for their explicit form), which, in the limit
of small q, obey X ∼ ðqx; qyÞT and χðqÞ ∼ qxðq2x − 3q2yÞ.
Importantly, the first term in Eq. (4) requires finite strain or
nematic order which breaks C3z symmetry explicitly. These
phenomena, which seem to be ubiquitous in graphene
moiré systems [63–69], define a preferred in-plane direc-
tion, captured by the unit vector êϵ. For instance, in the
case of strain, êϵ ∝ ðϵxx − ϵyy; ϵxy þ ϵyzÞT , where ϵij are the
strain-tensor elements. We note that the coupling would
also be present if ΦV was replaced by another order
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parameter that itself already breaks both TRS and C3z
simultaneously [69,70]. The second term in Eq. (4) is finite
regardless of whether C3z is broken.
To study the SDE, we self-consistently minimize

FV ½ΦV;Δq� and δF S½ΦV;Δq� with respect to ΦV and
Δq, respectively, and compute JðqÞ, for a given q that
we impose and that differs from the true equilibrium q0.
For concreteness, we use a nearest-neighbor dispersion
with finite flux ϕ on the triangular lattice, ξk ¼
−
P

3
j¼1 tj cosðaj · k − ϕ=3Þ where aj are three C3z-related

primitive vectors. We choose t1 ¼ t, t2 ¼ t3 ¼ tð1þ βÞ to
parametrize the impact of strain (∝ β) on the dispersion
and, for notational simplicity, measure all energies in units
of t in the following.
Back action and SDE.—We start with the first term in

Eq. (4), i.e., set α0 ¼ α00 ¼ 0 in FV . As can be seen in
Fig. 1(a), finite α now induces a q dependence inΦV , which
breaks C3z symmetry as a result of the preferred direction
associated with êϵ. As we set β ¼ 0 for now, Γq looks
virtually C3z symmetric, while larger α will lead to a
noticeable asymmetry in Γq as well; see Fig. 1(b). This
results from a “backaction mechanism,” where a finite
supercurrent, which is associated with detuning the center
of mass momentum q0 → qþ δq0 of the Cooper pairs away
from their equilibrium value q0, changes the strength of
ΦV ; as increasing (decreasing)ΦV will weaken (strengthen)
superconductivity, this, in turn, influences Γq. This can be
thought of as the supercurrent analog of the coupling
between the dissipative current and valley polarization
observed in graphene moiré systems [71–73]. We note

in passing that a sufficiently strong supercurrent can also
flip the sign ΦV in our theory.
This backaction also affects the q dependence of the

supercurrent, which allows one to enhance the SDE as can
be seen in Fig. 1(c). We further present in Fig. 1(d) the
diode efficiency η as a function of ΦVðq ¼ 0Þ for different
strengths of the backaction. Without backaction (α ¼ 0, red
dashed line), η does not exceed 30%, corresponding to
Jcðn̂Þ ≃ 1.86Jcð−n̂Þ. In contrast, increasing α and, thus,
boosting the backaction mechanism can significantly
enhance the SDE, even reaching efficiencies as high as
75% (solid black line), i.e., Jcðn̂Þ ≃ 7Jcð−n̂Þ.
This enhancement mechanism of the SDE is also

possible in the presence of C3z, where α ¼ 0, if we take
into account finite α0 in Eq. (4); see Fig. 2. We can clearly
see the induced q (and thus supercurrent) dependence of
ΦV in Fig. 2(a). However, the backaction onto Γq is less
clearly seen in Fig. 2(b) at a single α0, since it is C3z
symmetric with and without it. Most importantly, though,
Fig. 2(c) reveals that the subleading backaction (α ¼ 0)
also enhances the current asymmetry.
Self-consistent theory.—We next turn our attention

to a systematic self-consistent formalism. We switch to
an action formalism and redefine ck;ν in Eq. (1) as
Grassmann variables depending on imaginary time τ. We
start from the effective action

S ¼
Z

dτ

"X
k;ν

c†k;ν∂τck;ν þHc þ SΔ þ SΦ

#
; ð5Þ

that captures the desired phenomenology in a minimal
setting. In Eq. (5), SΔ ¼ P

q½ð1=gcÞjΔqj2 þ uΔjΔqj4� and
SΦ ¼ ð1=gvÞΦ2

V þ vΦV
Φ4

V are the bare actions of the
Hubbard-Stratonovich fields associated with superconduc-
tivity and valley polarization, respectively. We include
terms up to quartic order (which, e.g., arise after having
integrated out electronic degrees of freedom at higher
energies) to stabilize coexistence of these two orders, as
is seen in experiment [25,34,74].

FIG. 1. Phenomenological theory with leading nematic cou-
pling, α ≠ 0, α0 ¼ α00 ¼ 0 in Eq. (3). ΦvðqÞ and ΓðqÞ for
(a) α ¼ −0.5 and (b) α ¼ −3.0 are shown in upper and lower
panels, respectively. (c) Angular (n̂) dependence of Jc for
different α, taking jΦðq ¼ 0Þj ¼ 0.32. (d) SDE efficiency η for
different α as a function of valley polarization at q ¼ 0. We use
g−1c ¼ 0.8Γq¼0½ΦVðq ¼ 0Þ�, μ ¼ −0.68, ϕ ¼ −0.7π, T ¼ 0.2,
êϵ ¼ ðcos π=3; sin π=3Þ.

FIG. 2. Phenomenological theory with C3z-symmetric coupling,
α0 ≠ 0, α ¼ 0, α00 ¼ 1.0 in Eq. (3). ΦvðqÞ and ΓðqÞ in (a) and (b)
are shown for α0 ¼ 0.8, and (c) displays the angular (n̂) depend-
ence of Jc for different α0. We use g−1c ¼ 0.7Γq¼0½ΦV ¼ 0.32�,
μ ¼ −0.68, ϕ ¼ −0.7π, T ¼ 0.2.
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The saddle point equations for ΦV and Δq read as

ΦV

gv
þ 2vΦΦ3

V ¼ 1

4

X
k;p¼�

p tanh
Ek;q;p

2T
; ð6aÞ

1

gc
þ 2uΔjΔqj2 ¼

X
k

�
tanh Ek;q;þ

2T þ tanh Ek;q;−
2T

�
2ðEk;q;þ þ Ek;q;−Þ

; ð6bÞ

or Δq ¼ 0, where Ek;q;p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2k;q;þ þ jΔqj2

q
þ pζk;q;− with

ζk;q;� ¼ ðEk;q;þ � Ek;q;−Þ=2. As required, Eq. (6b)
becomes equivalent to aSq ¼ 0 when expanded to leading
order in Δq.
We solve Eq. (6) self-consistently for both Δq and ΦV

for given q. This captures the mutual influence of these
two orders, as Δq and ΦV enter each other’s saddle point
equation, Eqs. (6a) and (6b), respectively, via the disper-
sion E. Broken C3z symmetry is entirely encoded in the
parameter β entering the bare normal-state dispersion ξk.
Generically, the two coupled saddle point equations are
expected to capture any symmetry-allowed coupling term
between Δq and ΦV in an effective free-energy expansion,
including those in Eq. (3). It turns out, though, that for the
simple coupling in Hc, where valley polarization only
enters as an imbalance of the chemical potential in the two
valleys, we find α ¼ 0 in Eq. (4) for any β. This is readily
shown by expanding Eq. (6a) in terms of δΦVðqÞ ¼
ΦVðqÞ −ΦVð0Þ at fixed ΔðqÞ and studying whether Δ
and ΦV are stationary at the same momentum (α ¼ 0) or
not (α ≠ 0); see the Supplemental Material [62]. The
obtained α ¼ 0 implies that the backaction is dominated
by the term α00jΔqj2Φ2

V in Eq. (4) for small q as can be
seen in Fig. 3(a), where δΦVðqÞ ∝ δΔðqÞ ∼ q2 for small q.
We have checked that generalizing the coupling to
ΦV

P
k;ν νfk·νc

†
k;νck;ν, with C3z-invariant form factors fk,

leads to finite α; this is clearly visible in Fig. 3(b), where

ΦVðqÞ is found to have a finite slope at the maximum (red
hexagon) of ΔðqÞ.
SDE in self-consistent theory.—To demonstrate that the

enhancement mechanism for the SDE based on the back-
action is a robust phenomenon, we here discuss it for the
original case without form factors, fk ¼ 1, where the
leading coupling (∝ α) in the phenomenological theory
in Eq. (3) is absent. In Fig. 4(a), we plot ΦVðqÞ and ΔðqÞ,
obtained by solving Eq. (6). We can clearly see the
supercurrent-induced change of ΦV , which is manifestly
not C3z invariant, due to β ≠ 0, and exhibits the strongest
asymmetry under q → −q for q along qx. Owing to the
additional coupling terms beyond those in Eq. (3), ΦVðqÞ
looks different at large q from that shown in Fig. 2(a).
However, for our purpose the more important ΔðqÞ looks
very similar to Γq in Fig. 2(b). Evaluating the thermal
expectation value of the current operator within the full
theory (see the Supplemental Material [62]) as a function of
q, we compute the directional dependence of the critical
current, shown in Figs. 4(b) and 4(c) for β ¼ 0 and β ≠ 0,
respectively. Exactly as in the phenonemological theory, we
find that broken C3z symmetry can enhance the SDE and
that the current asymmetry first increases with small ΦV
(as significant TRS breaking is needed to generate a large
current asymmetry) but then eventually decreases with
large ΦV (as it destabilizes superconductivity and also
weakens the backaction). This is also visible in Fig. 4(d),
where we plot the SDE efficiency η of the full self-
consistent theory (black line) as a function of valley
polarization at q ¼ 0 and compare it with the situation
without backaction (red dashed line); for the latter, we just
fix ΦV at the indicated value ΦVðq ¼ 0Þ, independent of q

FIG. 3. Coupling of supercurrent to valley polarization within
microscopic theory. ΦVðqÞ and ΔðqÞ along one-dimensional
momentum cut with angle π=6 relative to the qx axis (a) without
form factors (fk ¼ 1) and (b) with form factors, fk ¼P

3
j¼1 sin aj · k. The red (blue) hexagon denotes the maximum

(minimum) of ΔðqÞ and ΦVðqÞ, respectively. We use β ¼ 0.6,
μ ¼ −1.36, gc ¼ 5.6, gv ¼ 11, uΔ ¼ 0.25, vΦ ¼ 0.125, T ¼ 0.4.

FIG. 4. SDE within self-consistent theory, Eq. (5). (a) ΦVðqÞ
and ΔðqÞ in the upper and lower panel, for jΦVðq ¼ 0Þj ¼ 0.48
and β ¼ 0.6. Resulting angular dependence of Jc is shown
without strain in (b) and with strain (β ¼ 0.6) in (c). (d) Efficiency
η as a function ofΦVðq ¼ 0Þ in presence of strain with backaction
(black solid line) and without backaction (red dotted line). The
parameters for gc, T, μ, vΦ, uΔ are the same as in Fig. 3; only gv is
varied to change ΦVðq ¼ 0Þ.
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and solve for superconductivity via Eq. (2). We observe
that the backaction not only enhances, as before, the
maximum value of η that can be achieved, but also
increases the efficiency significantly at smaller values of
valley polarization. The reason for this amplification is the
aforementioned dominance of the α00-like couplings in the
self-consistent theory, which enhance ΦVðqÞ when sup-
pressing Δq with finite q; see also Fig. 3(a). So even if we
have very small ΦVðq ¼ 0Þ, valley polarization can reach
sizable values at nonzero q due to the coupling to the
supercurrent, which in turn enhances the diode effect. This
is why η reaches finite values in the limit ΦVðq ¼ 0Þ → 0þ
with backaction, while it has to vanish linearly with
ΦVðq ¼ 0Þ without it in Fig. 4(d). It shows that the
proposed backaction mechanism also enhances the typical
η which can reach large values without the need of fine-
tuning ΦVðq ¼ 0Þ to its optimal strength.
Conclusion.—We have shown, using both a simple free-

energy expansion and a self-consistent theory, that the
supercurrent can couple to and, hence, affect the valley
polarization ΦV , which in turn can enhance the SDE effi-
ciency significantly; see Figs. 1(d) and 4(d). Motivated by
Ref. [25], this was formulated for a theory applicable to
graphene-based systems; however, we expect that the basic
mechanism based on coupling of the supercurrent to a TRS-
breaking order parameter is more generally valid for zero-
field superconducting diodes.
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