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We consider the finite-frequency response of multiterminal Josephson junctions and show how
nonreciprocity in them can show up at linear response, in contrast to the static Josephson diodes featuring
nonlinear nonreciprocity. At finite frequencies, the response contains dynamic contributions to the
Josephson admittance, featuring the effects of Andreev bound state transitions along with Berry phase
effects, and reflecting the breaking of the same symmetries as in Josephson diodes. We show that outside
exact Andreev resonances, the junctions feature nonreciprocal reactive response. As a result, the microwave
transmission through those systems is nondissipative, and the electromagnetic scattering can approach
complete nonreciprocity. Besides providing information about the nature of the weak link energy levels, the
nonreciprocity can be utilized to create nondissipative and small-scale on-chip circulators whose operation
requires only rather small magnetic fields.
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Nonreciprocal superconducting electronics has been
intensely studied in the recent years, as an important
building block for future superconducting devices.
Particular attention has been paid to Josephson diodes that
feature different critical currents for two directions of
supercurrent [1–13]. However, exploiting such nonreci-
procity in high-speed electronics, for example, for rectifi-
cation would require exciting the junction with a radio
frequency signal whose amplitude exceeds smaller of the
critical currents. This nonlinear regime may turn out
cumbersome for many applications.
A natural question then to ask is under which conditions

it might be possible to realize nonreciprocal response of
Josephson junctions under linear response. At low frequen-
cies, they are characterized by their inductive response,
which is always reciprocal. It is hence necessary to go
beyond the static regime. Moreover, any two-terminal
system is bound to have reciprocal linear response.
In this Letter, we consider the generic finite-frequency

linear response of multiterminal Josephson junctions. The
dynamic features are connected with the subgap Andreev
bound states (ABS) [14] in weak links with finite trans-
mission. Therefore, we first discuss general aspects of the
response of Andreev bound state systems, and then outline
a minimal microscopic model. The results illustrate that
significant nonreciprocal response is essentially always
present if the system is flux biased. Moreover, we show that
the φ0 effect [15–17] that usually accompanies the super-
conducting diode effect also results to a nonreciprocal radio
frequency response. Such nonreciprocity is reactive and
occurs within a large bandwidth around the Andreev bound
state resonances.
We also show how the nonreciprocity can be readily

measured via the microwave scattering from the junction

[see Fig. 1(a)]. In particular, it becomes possible to realize
an Andreev bound state -based Josephson circulator, which
has a small footprint, large bandwidth, and high ratio
between “forward” and “reverse” circulation. Such systems
may rival other recent suggestions for on-chip circulators,
such as those based on conventional insulator-based
Josephson junctions [18], or those based on mechanical
resonators [19].
Linear response.—The electromagnetic linear res-

ponse of a multiterminal system is characterized by its
susceptibility χij, which relates current Ji in each lead i to
the driving by voltages Vj in other leads: JiðωÞ ¼P

j χijðωÞVjðωÞ=ð−iωÞ. The Kubo formula for the ABS
susceptibility reads [20–22]

(a) (b)

FIG. 1. (a) Nonreciprocal electromagnetic scattering parameter
Sij ≠ Sji, which relates rf signal inputs to outputs, Vout

i ¼ SijV in
j .

Its asymmetry originates from time-reversal breaking due to the
electronic scattering matrix S, or external flux biasing Φi.
(b) Transition involving the lowest Andreev bound state. Non-
reciprocal response originates from nonsymmetric current oper-
ator matrix elements.
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χABSij ðωÞ ¼ 2
X
kk0

Iikk0I
j
k0k

fk − fk0

ϵk − ϵk0 þ ℏωþ i0þ
: ð1Þ

Here, the ABS jki are at energies ϵk, with summations
running over also negative energies. The states couple to
the electromagnetic vector potential via current operators
Ĵi, with corresponding matrix elements Iikk0 . Moreover
fk ¼ fðϵkÞ ¼ 1=ðeϵk=T þ 1Þ is a Fermi function.
Nonreciprocity.—The electromagnetic response is non-

reciprocal when χijðωÞ ≠ χjiðωÞ. For the static response
generally χijð0Þ ¼ χjið0Þ for any ABS system, since the
equilibrium current Jieq ¼ ð2e=ℏÞ∂φi

F in lead i is a deriva-
tive of the free energy versus the electromagnetic phase
φi=2 ¼ eVi=ð−iℏωÞ of that lead. Hence the susceptibility

χijð0Þ ¼ χjið0Þ ¼ ðL−1Þij ¼
4e2

ℏ2

∂
2F

∂φi∂φj
ð2Þ

is the inverse Josephson inductance matrix L−1. [23].
According to Eq. (1) the situation is different for ω > 0,

and the response can be nonreciprocal if

ImIikk0I
j
k0k ≠ 0 ð3Þ

for some leads i ≠ j and ABS k ≠ k0. Indeed, for ω ≪
jϵk − ϵk0 j and T ¼ 0, Eq. (1) becomes, [24,25] using
ℏIikk0=e ¼ ðϵk − ϵk0 Þhkj∂φi

jk0i − δkk0∂φi
ϵk,

χABSij ðωÞ ≃ χABSij ð0Þ − 2iω
e2

ℏ

X
ϵk>0

Bk
ij: ð4Þ

The low-frequency nonreciprocal part consists of the
ABS Berry curvatures Bk

ij¼−Bk
ji¼−2Im½ð∂φi

hkjÞ∂φj
jki�,

which is accessible in microwave experiments [26]. The
maximal nonreciprocity is, however, usually not reached in
this regime.
For time-reversed states k̄, k̄0 we have Ii

k̄k̄0I
j
k̄0k̄ ¼

ðIikk0Ijk0kÞ�. Hence, time-reversal symmetry ϵk̄ ¼ ϵk gener-
ally cancels the nonreciprocal contribution. Moreover,
spatial (permutation of leads) symmetry also prevents it.
Nonzero superconducting phase differences φi ≠ φj be-
tween leads lift both symmetries, and are generically
sufficient to generate nonreciprocal ABS response.
For typical superconducting systems flux bias is then

usually needed. However, systems with “intrinsic flux
biasing” do exist: they are the systems featuring φ0 [15–
17] and superconducting diode effects [1–12]. They break
the time reversal symmetry and hence are likely to also
support nonreciprocal rf response without external
flux bias.
Scattering approach.—To pose a minimal model where

ABS energies and matrix elements are easy to find, we use
the scattering approach [27,28]. The technical details are as
follows. The Bogoliubov–de Gennes (BdG) equation in
each of the leads i can be written as Hiϕi ¼ ϵϕi, where in

the Andreev approximation, at x < 0,

Hi ¼ vγ3½k̂x þ qiτ3 þ AiðxÞτ3� þ Δτ1γ1: ð5Þ

Here and below we use units with e ¼ ℏ ¼ 1. The basis
here is ϕ ¼ ðϕeþ;ϕh

−;ϕ
e
−;ϕ

hþÞ ¼ ðϕ>;ϕ<Þ corresponding to
the wave function ψe=hðxÞ ¼ P

� ϕe=h
� ðxÞe�ikFx, where

ϕe=h
� are vectors containing the coefficients for the different

leads, spin, and scattering channels. Here τj ¼ 1 ⊗ σj and
γj ¼ σj ⊗ 1 are Pauli matrices in the Nambu e=h and group
velocity > = < spaces, qi is the superfluid momentum in
each lead, and AðxÞ is the vector potential. The junction at
x > 0 is characterized by the scattering matrix S boundary
condition ϕ<ð0Þ ¼ Sϕ>ð0Þ, and Andreev reflection in
Eq. (5) results to ϕ>ð0Þ ¼ SAðϵkÞϕ<ð0Þ. Here,

S ¼
�
Se 0

0 Sh

�
; SA ¼

�
0 aþ
a− 0

�
; ð6Þ

and a� ¼ expf−i arccos½ðϵ ∓ vqÞ=Δ�g. The supercon-
ducting phases of the leads are contained in S,

Sije=h ¼ e�iðφi−φjÞ=2ðSð0Þe=hÞij. The BdG current operator in

lead i is Ĵi ¼ − 1
2
∂H=∂A ¼ − 1

2
vγ3τ3Pi, where Pi is a

projector to the channels in lead i, and the factor 1
2
accounts

for BdG double counting of states. For q ¼ 0 the bound
states can be solved [24,28] via the eigenproblem
SeShwk ¼ eiαkwk, which gives ϵk ¼ Δ cosðαk=2Þ with
0 ≤ αk ≤ 2π. The corresponding ABS wave function vector
at the interface is

ϕkð0Þ ¼ Nkðeiαk=2S†ewk;wk; eiαk=2wk; ShwkÞ; ð7Þ

where Nk ¼ ðΔ2 − ϵ2kÞ1=4=ð2vw†
kwkÞ1=2 is the normaliza-

tion constant. We neglect self-consistency in the leads, and
evaluate the current at the interface, Iikk0 ¼ ϕkð0Þ†Ĵiϕk0 ð0Þ.
Then Eq. (1) follows via standard methods [29].
Equation (1) captures the bound-state part of the

response properly, but obtaining the continuum response
from it would need more care. It is more convenient to use
the corresponding Green’s function expression [29]

χijðωÞ ¼
Z

∞

−∞

dϵ
iπ

tr½ĴiG>
ϵ Ĵ

jGA−
ϵ−ω þ ĴiGRþ

ϵ ĴjG>
ϵ−ω�: ð8Þ

Here, G>
ϵ ¼ ðGR

ϵ −GA
ϵ Þfð−ϵÞ is the equilibrium Green’s

function, and GR=A;þ
ϵ ¼ Gþðϵ� i0þÞ, [35] where

GþðϵÞ ¼ −i
�
1

S

�
½1 − SAðϵÞS�−1

�
1 SAðϵÞ

�
v−1: ð9Þ

This result for GþðϵÞ ¼ Gðx ¼ 0; x0 ¼ 0−; ϵÞ is found by
solving the equation ½ϵ −H�Gðx; x0Þ ¼ δðx − x0Þwith the S
boundary condition at x ¼ 0 and boundedness at x → −∞.
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Also, G−ðϵÞ ¼ Gðx ¼ 0−; x0 ¼ 0; ϵÞ ¼ GþðϵÞ þ iγ3v−1.
Equation (8) is the first-order correction from the pertur-
bation series G ¼ G0 −G0AĴG0 þ � � � to Ji ¼ −itrĴiG>.
Nonreciprocity in a fully symmetric junction.—To illus-

trate the formation of the nonreciprocity in a simple model,
let us consider the response in a symmetric three-terminal
single-channel junction. The most general scattering matrix
invariant with swapping the leads is

Se ¼ eiϕ

0
B@

1þ c c c

c 1þ c c

c c 1þ c

1
CA; Sh ¼ S�e; ð10Þ

where ϕ is an irrelevant overall phase, and c ¼ − 2
3
eiγ cos γ

where γ is a real parameter describing the transmission
amplitude between the leads. This form assumes spin-
rotation invariance, so the spin sector is trivial.
The ABS energy is ϵ1 ¼ Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2ðγÞðjdj2 − 1Þ

p
,

where d ¼ 1
3

P
3
j¼1 e

iφj . The energy is closest to zero at
d ¼ 0, i.e., ðφ1;φ2;φ3Þ ¼ ð0; 2π=3;−2π=3Þ, as illustrated
in Fig. 1(b). At this point, the additional symmetry
allows diagonalization with wk ¼ ð1; eiζk ; e−iζkÞ= ffiffiffi

3
p

, ζk ¼
�ðπ=3Þ; π. The only nonzero current operator matrix
elements are Ii1;−1 ¼ ðIi−1;1Þ� ¼ ðΔcos2γ=3Þeiηi−iγ , ηi ¼ 0;
−2π=3; 2π=3, for 0 ≤ γ ≤ π=2. From Eq. (1), accounting
for spin and at zero temperature,

χABSij ðωÞ ¼ 4Δ2cos4γ
9

X
�

�e�iðηi−ηjÞ

ωþ i0þ ∓ 2ϵ1
; ð11Þ

and ϵ1 ¼ Δ sin γ. The ABS response at this flux configu-
ration is clearly nonreciprocal, χij ≠ χji. As the underlying
normal-state scattering matrix is otherwise fully symmetric,
it is clear flux biasing is then fairly generally sufficient for
the nonreciprocity.
Moreover, this nonreciprocity is generated by super-

conductivity: in the normal state Δ → 0 from Eq. (8) we
find the scattering theory relation [36] χijðωÞ ¼ −iωYij,

Yij ¼ ð1=2πÞtr½Piδij − ðSije Þ†Sije � between the multitermi-
nal scattering matrix and the ohmic conductance matrix Y.
It is here fully reciprocal. In the normal state, Y is
independent of the flux biasing of the leads.
The nonreciprocal part χnr ¼ ðχ − χTÞ=2 from Eq. (11) is

shown in Fig. 2(a). The real part Reχnr describes dissipa-
tive response, and the imaginary part Imχnr is reactive.
The ABS pair-breaking resonance, χnr21 ∼ iAðfφgÞΔ=
ðω − 2ϵ1ðfφgÞ þ i0þÞ, dominates up to the frequency ω ¼
Δþ ϵ1 where transitions involving the continuum spectrum
activate. Phase dependence of the resonance weight A is
shown in Fig. 2(b).
The above results correspond to the T ¼ 0 ground state.

Quasiparticle poisoning can significantly modify the linear
response. [29,37] From Eq. (1), in the poisoned state one

expects the ABS resonance to be either absent in the spin-
rotation symmetric case, or shifted in frequency otherwise.
Multichannel systems.—The nonreciprocity from flux

biasing is sensitive to phase shifts in the current operator
matrix elements, which can depend on microscopic details.
In Fig. 3(a) we show numerical evidence for its scaling with
the number of channels N> in each lead, for random time-
reversal symmetric S [28,38] with flux biasing. The mean
value ⟪χ̂nr⟫ is zero, in contrast to the reciprocal part ⟪χ̂r⟫
which scales linearly with N>. The variance is similar for
the reciprocal and nonreciprocal parts, and it is constant at
ω below the ABS gap, ω < min jϵkj, and proportional to

(a) (b)

FIG. 2. (a) Elements of the nonreciprocal response coefficient
χnrij ðωÞ ¼ ½χijðωÞ − χjiðωÞ�=2 of the symmetric three-terminal
junction, for γ ¼ 0.1 at ðφ1;φ2;φ3Þ ¼ ð0; 2π=3;−2π=3Þ. The
real (solid) and imaginary (dashed) parts from Eq. (8) are shown,
in addition to Eq. (11) (dotted). (b) Resonance weight AðfφgÞ in
χnr21 for fφg ¼ ð0;φ2;φ3Þ.

(a)

(b)

FIG. 3. (a) Susceptibility in multichannel systems. Mean
⟪Reχ̂r12⟫ (circle) and standard deviation ⟪ðReδχ̂r12Þ2⟫1=2 (×),
⟪ðImδχ̂nr12Þ2⟫1=2 (þ) of reactive susceptibility (linewidth
Γ ¼ 10−3Δ) vs channel count N>, averaged over 105 circular
orthogonal ensemble Sð0Þ [28,38], and φi ¼ ð0; π=3;−2π=3Þ.
Dashed line indicates linear scaling. Left panel: below
(ω ¼ 0.05Δ), and right panel: above (ω ¼ 0.3Δ) lowest ϵk.
(b) Elements of the nonreciprocal response coefficient χnrij ðωÞ
of the symmetric 3-probe system at φi ≈ ð0; 0.323;−0.323Þ for
vqi ¼ ð0; 0.5Δ;−0.5ΔÞ and γ ¼ π=4. Dissipative (solid) and
reactive (dashed) parts are shown.
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inverse ABS linewidth Γ−1 above it [39]. Hence, we expect
a typical diffusive system without spin-orbit interaction to
exhibit flux-driven nonreciprocal susceptibility, even if
geometrically symmetric in the normal state, but potentially
with a random sign.
Nonreciprocity without flux bias.—Consider then situa-

tions where the nonreciprocity does not require flux biasing.
At equilibrium the superconducting phases φi mini-
mize the junction free energy F ¼ −2T

P∞
n¼0 Re ln det½1−

SAðiωnÞS�, where ωn ¼ 2πTðnþ 1
2
Þ. In systems with a φ0

effect [15–17], this configuration can have φi ≠ 0;�π and
nonzero nonreciprocity. Moreover, nonreciprocity in the
scattering matrix S is also inherited by the superconducting
system.
As a simple example of the nonreciprocity of normal-

state scattering, consider a chiral three-probe junction,

Se ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; χABSij ðωÞ ¼ Δ2

8

X
�

�e�iðηi−ηjÞ

ωþ i0þ ∓ Δ
;

ð12Þ

where ηi ¼ ð7π=6; 11π=6; π=2Þ. This system has an ABS
pinned at ϵk ¼ �Δ=2 and no equilibrium supercurrent, but
the ABS contribute a nonreciprocal response independent
of the flux biasing, reflecting broken time-reversal sym-
metry of the normal state.
For the φ0 effect and nonreciprocity without normal-state

asymmetry or flux biasing, we consider a model proposed
in Ref. [5] for a superconducting diode. There, the effects
are induced by a screening current superflow vqi ≠ 0 in
the leads.
In Fig. 3(b) we show the nonreciprocal part of the

susceptibility fromEq. (8) for the symmetric 3-probe system
with vqi ≠ 0. The equilibrium phase differences are non-
zero, indicating theφ0 effect induced by the superflow. Here
the phase differences are small, andABS remains embedded
in the continuum at jϵj > Δ − vq, and couples less strongly
to the electromagnetic response. Other realizations of the φ0

effect such as the one combining spin-orbit interaction and
spin splitting [8] are likely to exhibit stronger nonreciprocity
at lower frequencies.
Scattering parameters.—For many applications, the

interesting quantity are the electromagnetic transmission
line scattering parameters Sij, which indicate the amplitude
and phase of the rf signal output from port i generated by
input in port j (as in Fig. 1). It is related to the admittance
matrix YijðωÞ ¼ χijðωÞ=ðiωÞ by [42]

SðωÞ ¼ 1 − Z1=2YðωÞZ1=2

1þ Z1=2YðωÞZ1=2 ; ð13Þ

where Z ¼ diagðZ1;…; ZNÞ is a diagonal matrix contain-
ing the characteristic impedances of transmission lines

connected to each terminal i. If χ is nonreciprocal, then
generally also S is. At low frequency, YðωÞ ≃ L=ð−iωÞ þ
Ynrð0Þ where Ynr is the nonreciprocal part, so that
Snr ¼ 1

2
ðS − STÞ ≃ 2ω2Z1=2LYnrLZ1=2. The nonrecipro-

cal contribution, which for ω → 0 contains the ABS
Berry curvature, [24] can be accessed in the scattering
experiment, in absorption [26] and as seen above also in the
reactive response.
The largest nonreciprocal response does not generically

occur in the low-frequency limit. Maximally nonreciprocal
admittance is obtained in the high-transparency limit γ → 0
at φi ¼ ð0; 2π=3;−2π=3Þ, where ϵk → 0 and

YABS ¼ e2

ℏ
4

ffiffiffi
3

p
Δ2

9ω2

0
B@

0 −1 1

1 0 −1
−1 1 0

1
CA; ð14Þ

which is reactive and nonreciprocal. This expression
assumes ω ≫ ϵk;Γ, where Γ is the ABS linewidth.
Flux biasing to this working point is possible with three
bias loops (see Fig. 1) with inductance LL such that
ℏ2=ðe2LLΔÞ > 2j cos γ cot γj=9 [29]. They contribute
admittance YL

ij ¼ ð1= − iωLLÞð3δij − 1Þ, so that Y ¼
YABS þ YL. The resulting S is illustrated in Fig. 4, where
the large nonreciprocal peak comes from the ABS con-
tribution. The peak occurs where ZYABS ∼ 1, which for the
parameters here is close but not exactly at the ABS
resonance. S is nonunitary at ω > ϵk þ Δ and at the
resonant frequency ω ¼ 2ϵk, which can be separated from
the peak nonreciprocity. The exact peak shape and height
depends on the details of impedance matching, and with
suitable Zi it is possible to reach jjS12j2 − jS21j2j ≈ 1.
Conclusions.—Although the static electromagnetic

response of Josephson junctions is always reciprocal, at
any nonzero frequency it generically becomes nonrecipro-
cal if time-reversal symmetry is broken. As the admittance
increases around Andreev bound state resonances, this
nonreciprocity can be large and provide full transmission

FIG. 4. Nonreciprocity of the electromagnetic transmission
through the flux-biased symmetric three-terminal junction, for
γ ¼ 0.1 at ðφ1;φ2;φ3Þ ¼ ð0; 2π=3;−2π=3Þ, and lead character-
istic impedances Zi ≈ 80Ω. Flux bias loop inductances are
assumed to be LL ¼ ℏ2=ð10e2ΔÞ.
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asymmetry matched to transmission lines, even if the
response comes from a single bound state.
Multiterminal Josephson junctions with few Andreev

bound states have been realized in recent experiments
[12,43–45]. In these systems, as shown above, the trans-
mission line scattering parameters are sensitive to the
Andreev bound states and at low frequencies their
Josephson Berry curvature, and hence provide a way to
probe them. In systems with many channels, we expect that
the nonreciprocal response has mesoscopic fluctuations,
but can be large compared to e2=ℏ in a typical realization.
Moreover, in the presence of strong spin-orbit interaction
and exchange field [8], it may be possible to obtain
significant nonreciprocity in the absence of flux bias also
in multichannel systems. In particular, multiterminal
Josephson junctions formed on two-dimensional transition
metal dichalcogenides [46] in the presence of either
magnetic field or magnetism are interesting candidate
systems for observing such effects. The φ0 and
Josephson diode effects have been seen also in twisted
bilayer graphene [47,48], making their multiterminal ver-
sions also viable candidates for strong flux-free nonreci-
procity. There, the nonreciprocal response in the absence of
flux bias would be a direct indication of the presence of the
φ0 effect that would have to be otherwise probed with
SQUID-based setups or indirectly via Fraunhofer patterns.
As shown by the example in Fig. 4, multiterminal

Josephson junctions may be viable candidates for con-
structing on-chip circulators with strong nonreciprocity and
large bandwidth. In conventional superconductors with
critical temperature of the order of 1 K, the nonreciprocity
would show up in the few GHz regime most relevant for
superconducting quantum electronics applications. They
can hence form extremely useful components of the
emerging quantum technology.

Computer codes used in this Letter are available at [49].
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