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We demonstrate slow dynamics and constrained motion of domain walls in one-dimensional (1D)
interacting bosons with double-well dispersion. In the symmetry-broken regime, the domain-wall motion
is “fractonlike”—a single domain wall cannot move freely, while two nearby domain walls can move
collectively. Consequently, we find an Ohmic-like linear response and a vanishing superfluid stiffness,
which are atypical for a Bose condensate in a 1D translation invariant closed quantum system. Near Lifshitz
quantum critical point, we obtain superfluid stiffness ρs ∼ T and sound velocity vs ∼ T1=2, showing similar
unconventional low-temperature slow dynamics to the symmetry-broken regime. Particularly, the super-
fluid stiffness suggests an order by disorder effect as ρs increases with temperature. Our results pave the
way for studying fractons in ultracold atom experiments.
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Introduction.—Ultracold neutral atom systems have
been a promising platform for studying novel quantum
many-body phenomena. Particularly, the ability to control
interacting bosons motivates substantial new fundamental
research [1–14] that does not have solid-state analogs. For
example, interacting bosons with double-well dispersion
(with two dispersion minima at k ¼ �k�) can be realized
in the experiments [6,10,12] with at least three distinct
approaches. One can achieve double-well dispersion by
using two counterpropagating Raman laser lights that
effectively create spin-orbit coupling for the pseudospin-
1=2 bosons [6,15,16]. Alternatively, a bosonic ladder with
π flux per plaquette (by laser-assisted tunneling [17])
generates double-well dispersion with the chain degrees
of freedom acting like the pseudospins [18–20]. Lastly,
shaking an optical lattice with a frequency close to the
energy difference between the ground band and the first
excited band can realize double-well dispersion [10,12].
Interacting bosons with double-well dispersion allow for
rich quantum phase diagrams and novel dynamical
response [21–37].
Bose condensates with double-well dispersion are highly

nontrivial, even without internal degrees of freedom (e.g.,
pseudospin). The two dispersion minima can be viewed
as Z2 degrees of freedom, and a Z2 symmetry-breaking
phase transition (analogous to an Ising ferromagnetic
transition [6]) occurs at low temperatures for repulsively
interacting bosons. Topological defects appear as domain
walls separating regimes with different momenta.
Intriguingly, the domain walls are stable and can persist
for hundreds of milliseconds in the experiments [10,12],
implying slow relaxation in the low-temperature (but
T ≠ 0) symmetry-broken regime.

In this work, we study the dynamics of one-dimensional
(1D) interacting single-component bosons with double-
well dispersion as summarized in Fig. 1. Under sponta-
neous Z2 symmetry breaking, the system naturally realizes
multiple domains carrying finite momenta, k� or −k�. We
demonstrate that the motion of domain walls are highly
constrained. A single domain wall cannot move, while two
nearby domain walls can move in a collective fashion. Such
intriguing kinetic properties are due to an emergent dipole
moment conservation, which suggests a genuine connec-
tion to the “fractons” [38–57]. The constrained domain-
wall motion here is in contrast to the dynamics of domain
walls in the transverse field Ising model [58,59] or holons

FIG. 1. Phase diagram and superfluid stiffness (ρs). χ ∝ −B is
the control parameter of the quantum phase transition. For χ > 0,
a dispersion with single minima is realized. ρs is finite and
essentially temperature-independent. For χ < 0, the dispersion
develops two minima at �k�, and a spontaneous Z2 breaking
takes place. ρs vanishes in this regime, and the corresponding
transport is Ohmic-like. At χ ¼ 0, a Lifshitz dispersion (i.e., a k4

dispersion) manifests. The renormalization group flows suggest
an interacting fixed point [61,62] rather than a quantum Lifshitz
Gaussian fixed point. The superfluid stiffness ρs ∼ Tα with
α ¼ 1.
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and spions in 1D antiferromagnets [60]. We also develop a
linear response theory for a symmetry-broken state with
multiple domain walls and show vanishing superfluid
stiffness and Ohmic transport, despite being a Bose con-
densate. Near the interacting fixed point, we develop a
hydrodynamic description and find superfluid stiffness and
sound velocity vanish at zero temperature, showing the
incipience of slow dynamics. Remarkably, the superfluid
stiffness ρs ∼ T, suggesting an order by (thermal-)disorder
effect. Our theory provides a natural explanation for the
stable domain walls in experiments [10,12] and suggests an
unprecedented way to study fractons in atomic, molecular,
and optical systems.
Model.—The 1D interacting single-component bosons

with a double-well dispersion are described by

Ĥ ¼
Z

dx

�
−Bj∂xbj2 þ Cj∂2xbj2 − μjbj2 þU

2
jbj4

�
; ð1Þ

where b is the annihilation operator for a boson, B and
C > 0 are the coefficients controlling single-particle
dispersion, μ is the chemical potential, and U > 0 denotes
the repulsive short-range interaction. In this Letter,
we focus mainly on the B > 0 scenario, which admits a
double-well dispersion with two minima at k ¼ �k� ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B=ð2CÞp
and an energy barrier ϵ0 ¼ B2=ð4CÞ at k ¼ 0.

B ¼ 0 is a critical point that realizes a Lifshitz dispersion
(i.e., k4). For B < 0, the problem is qualitatively similar to
the well-known repulsive Lieb-Liniger model [63] (up to
some dispersion correction).
In this work, we focus only on the superfluid phase [i.e.,

U=ðBn0Þ ≪ 1], where n0 is the density. Since there are two
dispersion minima (k ¼ �k�), it is important to determine
the ground state configuration. With mean-field approxi-
mation, one can show that the ground state is the same
as the “plane-wave phase” in the 1D spin-orbit-coupled
BEC [16], where only one minimum is occupied. As a
result, the ground state features a spontaneous Z2 symmetry
breaking, and the ground state degeneracy is 2. We adopt
the standard harmonic fluid approximation in the high-
density superfluid limit [64] such that the complex boson
field is decomposed into the density and phase fields as
follows:

bðxÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ δnðxÞ

p
eiϕðxÞ; ð2Þ

where n0 is the density, δn encodes the local fluctuation of
density, and ϕ is the phase field. Using the expression of b
in Eq. (2), we can rewrite Eq. (1) with the two dynamical
variables, ϕ and δn. For jδnj ≪ n0, we can integrate out δn0
in the imaginary-time path integral and obtain a phase-only
action. After rescaling of the parameters, we obtain an
imaginary-time action Seff given by [65]

Seff ≈
Z

dτdx

�
1

2
ð∂τθÞ2 þ

1

2
ð∂2xθÞ2 þ

r
2
ð∂xθÞ2 þ uð∂xθÞ4

�
;

ð3Þ

where τ is the rescaled imaginary time, θ is the rescaled phase
field, r ∝ −B, and u is the effective interaction of the phase
fields. Equation (3) is strictly valid for δ≡ μ=ϵ0 ≫ 1. For
δ ≪ 1, density fluctuation cannot be ignored near a domain
wall [29]. We focus only on the limit δ ≫ 1 and u > 0. Since
much of our analysis ultimately relies on the low energy
degrees of freedom, i.e., domain walls and phonons, our
conclusions are not qualitatively changed in the other limit as
discussed in the Supplemental Material [65].
Constrained motion and conservation of dipole

moments.—The 1D bosons with a double-well dispersion
manifest spontaneous Z2 symmetry breaking, analogous
to a ferromagnetic transition. To see this, we introduce
mðxÞ ¼ ∂xθ, which corresponds to the momentum density
of the superfluid. The static part of Eq. (3) becomes
the standard Landau theory for an Ising magnet,
ðr=2Þm2 þ 1

2
ð∂xmÞ2 þ um4. For r < 0, the hmi ≠ 0 fea-

tures a spontaneous symmetry breaking. At zero tempera-
ture, the m is spatially uniform, and jmj ¼ m0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijrj=ð4uÞp

. At small finite temperatures, the system devel-
ops multiple domains with alternating signs of m (corre-
sponding to the slope of θ) as illustrated in Fig. 2. The
density of domain walls is proportional to exp ð−EDW=TÞ,
where EDW is the energy cost for creating one domain
wall [29]. The dynamics in a state with multiple domain
walls is highly unusual as we show in the following.
First, we discuss the single-domain-wall solution. An

“up-pointing” single-domain-wall is described by [29]

θDWðxÞ ¼ θ0 þm0

ffiffiffiffiffi
2

jrj

s
ln

�
cosh

� ffiffiffiffiffi
jrj
2

r
ðx − x0Þ

��
; ð4Þ

where the domain-wall position isx0.When
ffiffiffiffiffijrjp jx−x0j≫1,

θDWðxÞ recovers the slopem0 for x > x0 and−m0 for x < x0.
Remarkably, moving a single domain wall will violate the
energy constraint in Hamiltonian by forcing slopes to deviate
from the equilibrium value �m0. Thus, the motion of a
single domain wall is suppressed due to the potential energy.
However, one canmove the entire domainwhile satisfying the
potential energy (the blue segment in Fig. 2). As a result, two
nearby domain walls can move simultaneously. The con-
strained domain-wall motion here is a direct consequence of
momentum conservation (i.e., spatial translation invariant) of
the1D interactingbosonswithdouble-well dispersionbecause
moving a single domain wall will result in a change in the
momentum of the condensate.
To understand the constrained domain-wall motion

further, we examine the states with multiple domains
more closely. First, we label the two types of domain
walls to positive charge (up-pointing) and negative charge
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(down-pointing). The total dipole moment of the domain-
wall charges is given by

D ¼
X
n

ðx2n − x2n−1Þ; ð5Þ

where xn indicates the position of the nth domain wall
(as illustrated in Fig. 2). The alternating domains can
be characterized by f½θðxnþ1Þ − θðxnÞ�=ðxnþ1 − xnÞg ¼
ð−1Þnþ1m0 without loss of generality. Using this configu-
ration, we can show that

D ¼ m−1
0

X
n

½θðx2nÞ − θðx2n−1Þ� ¼ 2πQm−1
0 ; ð6Þ

where Q ¼ ð1=2πÞ R dx∂xθ is related to the total momen-
tum, which governs the boundary condition. Thus, the total
dipolemomentD is a conserved quantity associatedwith the
boundary condition of θ. We note that the conservation ofD
(the dipole moment of topological defects) is dictated by the
energy constraint, and the dipole moment conservation is an
emergent low-temperature descriptionwhen phonons can be
ignored. The conservation of dipole moment suggests a
relation to the fractons [38–45,47–57] that is known for its
constrained dynamics of excitations.Our result suggests that
the domain walls of 1D bosons with double-well dispersion
can be viewed as fractons.
Phonon and relaxation mechanism.—In addition to

domain walls, the low energy dynamics of the system
contains gapless phonon degrees of freedom as well. To
understand the interplay between phonons and domain
walls, we consider a long-wavelength variation δθðxÞ on
top of a single domain-wall profile θDW [Eq. (4)]. We can
construct a solution such that the entire x < x0 domain
displaces slightly (corresponding to the blue domain
motion in Fig. 2) while the x > x0 domain remains the
same. For jxj ffiffiffiffiffiffiffiffiffiffijrj=2p

≫ 1 (i.e., sufficiently away from the
domain wall), we find that δθðx → −∞Þ ≠ 0 and
δθðx → ∞Þ ¼ 0, corresponding to a perfect reflection at
the domain wall [65]. The phonons in each domain couple

through the motion of the domain walls. Thus, we can
integrate out the phonons in each domain wall and focus on
the dynamics of the domain walls.
Integrating out the nearly perfectly reflecting phonons

leads to two forces on the domain walls: a Casimir effect
and phonon drag. The Casimir effect is generated by the
standing waves formed by the phonons in each domain,
and it tends to stabilize configurations with equally spaced
domain walls. The phonon drag is a friction force that arises
from the “radiation pressure” as a moving domain wall
experiences imbalance fluxes of momentum on the two
sides (due to the longitudinal Doppler shift). The phonon
drag can be described by a force Fdrag ¼ −γv, where γ is
the coupling constant. The phonon fluctuations responsible
for the drag also lead to diffusive motion of the domains
with a velocity determined by the fluctuation dissipation
theorem [65]. A direct consequence of the domain diffusion
is an unusually slow dynamics (as compared to other
systems, e.g., the transverse-field Ising model [58,59]).
See [65] for a discussion.
Ohmic response and vanishing superfluid stiffness.—To

further quantify the slow dynamics of the domain walls,
we study the transport properties in the symmetry-broken
regime. Transport in the condensate is determined by the
response to a vector potential A ≥ 0, equivalent to tilting
the optical lattice in the experiments [2,69]. The vector
potential A and θ satisfy the following gauge transforma-
tion: A → Aþ ∂xΛ and θ → θ þ Λ. Therefore, we can
incorporate the effect of vector potential by the minimal
substitution: ∂xθ → ∂xθ − A. In the presence of a uniform
vector potential A, the minimal momenta become m0 þ A
and −m0 þ A, indicating that A modifies the slope in each
domain. Assuming 0 < A < m0, one can easily find new
configurations that follow the change of slopes in θ without
changing the boundary phase Δθ. In addition, the ground
state energy with n domain walls (n > 1), En½θðxÞ� does not
depend on A, suggesting an emergent rank-two gauge
symmetry, En½θðxÞ� ¼ En½θðxÞ − Ax� [46]. Intuitively, such
properties imply the absence of response to a finite A,
indicating a state with zero superfluid stiffness despite
locally being a Bose condensate. In fact, the supercurrent
(i.e., distortion of slope) due to an application of a vector
potential can relax by dissipating energy into the phonon
drag. The result is a finite relaxation time for the current
that is similar to the decay of current following a transient
electric field in an Ohmic conductor.
To confirm the absence of superfluid stiffness, we

develop a linear response theory for the symmetry-broken
states and derive the Ohmic transport [65]. The goal is to
derive the effective action of A by integrating out the
domain-wall degrees of freedom. For simplicity, we assume
a strong Casimir potential such that the domain walls are
equally spaced and the domain size is l̄. In the presence of
A, we assume ∂xθ ¼ ð−1Þnþ1m0 þ hðxÞ for xn < x < xnþ1,

FIG. 2. Motion of domain wall in the symmetry-broken phase.
In each domain, j∂xθj ¼ m0, where m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijrj=ð4uÞp
. A single

domain wall (e.g., the red dot) cannot move freely because of the
energy penalty, while an entire domain (e.g., the blue segment)
can move. The directions of collective coordinates a and b
correspond to the movement of domains. The domain-wall
positions are labeled by xn.
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where hðxÞ is a response to the applied vector potential A.
Then, we integrate out the fluctuations at the Gaussian level
and derive an effective action for A as follows:

SA;eff

���
k¼0

≡ l̄
β

X
ωm

QðωmÞÃð−ωmÞÃðωmÞ:

The ac conductivity and superfluid stiffness can be
obtained by σacðωÞ ∝ ði=ωÞQðωm → −iω − 0þÞ and
ρs ∝ Qðωm ¼ 0Þ. When γ ≠ 0, we obtain an Ohmic
response in the real part of low-frequency conductivity:

Re½σacðωÞ� ∝
16m0jrj2γð8m2

0jrj þ γ2Þl̄
ð8m0jrjγÞ2 þ ½ð8m2

0jrj þ γ2Þωl̄�2 : ð7Þ

Moreover, the superfluid stiffness ρs vanishes exactly,
suggesting insulating behavior in a Bose condensate.
Although the analytical results are derived with the
equal-spaced domain-wall assumption, the qualitative
results remain the same for general situations as apparent
from the numerical results discussed later.
In addition, we study the problem using a discretized

Gross-Pitaevski equation [65], which can simulate bosons
in the semiclassical limit. The main goal of our simulation
is to confirm the Ohmic response of the finite-temperature
states with a few domain walls. To do this, we choose initial
conditions ψ j ¼ eiθj together with a choice for the phase
variable θj where the sign of the slope of θj varies across
domain walls in space. In addition, we assume that the
system is subject to a large uniform electric field for a short
time, which as discussed in the previous subsection,
corresponds to a tilting of the phase profile θj → θj þ Aj.
The ensuing dynamics obtained from the numerical sol-
ution of the Gross-Pitaevski equation, shown in Fig. 3(a),
confirms the relaxation of the phase profile to a configu-
ration where the slopes obey the ground state value as time
progresses through the simulation.
To understand the observable transport consequences

of this relaxation we compute the discrete local current
operator. In Fig. 3(b), we show the current profiles for a few
representative times corresponding to the phase profiles in
Fig. 3(b). There are two important messages here. First,
the current relaxes, suggesting a nonsuperfluid behavior.
Second, the average current decreases substantially from
the initial value, suggesting a vanishing current in the long-
time limit. The decay of current confirms the Ohmic
transport as predicted by our linear response theory.
In continuous 1D systems with momentum conservation,

thermodynamic states can be associated with a certain
momentum density. Such states, which result from the
application of an electric field, carry a current even after the
electric field is switched off. The resulting transport is
effectively ballistic corresponding to infinite conductivity.
In our case with Z2 symmetry-broken ground states, the
momentum imparted to the system can be absorbed into

changing the configuration of the domain walls (see Fig. 3).
Such a rearrangement transfers energy in the supercurrent
into thermal energy of the phonons through a drag force on
the domain walls. This dissipation of the current manifests
as an Ohmic response of the current to an electric field.
Our theory shows a rare example of zero superfluid
stiffness and Ohmic response in a continuous translation
invariant 1D system. In this case, the domain walls can be
thought of as playing a similar role as the vortices in the
high temperature phase of the two-dimensional superfluid
where the Lorentz force on vortices from an applied
supercurrent results in a dissipative voltage.
Lifshitz quantum hydrodynamics.—The slow dynamics

of the symmetry-broken phase persists all the way to the
vicinity of the Lifshitz quantum critical point [11,12,30].
The quantum Lifshitz theory [i.e., Eq. (3) with r ¼ u ¼ 0]
is at an unstable fixed point, and the renormalization group
(RG) flows lead to an interacting fixed point with r < 0 and
u > 0 [61,62]. The scaling behavior in the vicinity of a
quantum critical point can be analytically derived using RG
and hydrodynamic treatment [65]. The main ideas and
results are summarized in the following.
First, we construct a partition function incorporating

the conservation laws (i.e., particle number, energy, and
momentum). Based on the partition function, we derive
the finite-temperature scalings of several observable
quantities using the RG results. Particularly, ρM ∼ T−1

corresponds to diverging inertia at zero temperature.
Concomitantly, the superfluid stiffness, ρs ∼ T, vanishes
at zero temperature [65]. The result of stiffness shows
an order by thermal disorder effect as ρs increases with
temperature. Note that the classical gases with Lifshitz
dispersion yield a different finite-temperature scaling in the
inertia, ρM ∼ T−1=2 [65]. Another quantity of interest is the
sound velocity, which can be derived using conservation
laws and the thermodynamic relations. We find that the
sound velocity vs ∼ T1=2, which vanishes at zero temper-
ature. We also note that the scaling of the Gaussian fixed

FIG. 3. Numerical results for time evolution of phase and
current profiles. An initial stationary state is prepared with a
vector potential A ¼ π=30 at t ¼ 0. Then, the state is evolved
without a vector potential. (a) The phase configurations with
different times. (b) The current configurations with different
times. J1 is the strength of the nearest-neighbor hopping in the
lattice model. t1 ¼ 0.0375J−11 , t2 ¼ 180J−11 , t3 ¼ 270J−11 , and
t4 ¼ 360J−11 . L ¼ 1200 for all the data. See Supplemental
Material for a detailed discussion of the numerical procedures.
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point (i.e., r ¼ u ¼ 0) yields the same results as discussed
in Supplemental Material [65]. The vanishing of superfluid
stiffness and sound velocity at low temperatures imply that
the dynamics in the quantum critical regime is very slow,
qualitatively similar to the symmetry-broken regime.
Discussion.—The constrained dynamics due to the

dipole moment conservation in the symmetry-broken
regime indicates a connection to the fractons [38–57]. In
addition, the conservation of dipole moment in our model is
analogous but also distinct to the Sz conservation in several
spin-1=2 models [70,71] that demonstrate Hilbert space
fragmentation [70–79]. Both conservation laws lead to
slow dynamics—however, the dipole moment D in this
case is not microscopic but rather associated with topo-
logical defects. In contrast to systems with Hilbert space
fragmentation, phonons together with slow domain motion
will cause thermalization on an exponentially long time-
scale. This is similar to slow quantum relaxation due to
dynamical constraints [80]. This long-time dynamics
would include the effect of the Casimir force, which can
also lead to an exponentially small in temperature residual
superfluid stiffness.
The emergent dipole conservation in the symmetry-

broken phase suggests that exact dipole conserving hydro-
dynamics [53] with vanishing superfluid stiffness and
associated slow dynamics of the u ¼ 0 Lifshitz critical
point characterizes the critical point of our model.
However, the finite u > 0 is a relevant perturbation that
results in a different quantum critical point [61,62]. Despite
this, the slow dynamics at the critical point [12] is found to
survive in the form of vanishing superfluid stiffness and
sound velocity. It is known that terms such as the i∂τð∂xθÞ2
term that we ignore in our analysis can destabilize the
quantum critical point in favor of a quantum fluctuation
driven first order transition [81]. However, we expect our
results to remain valid except very close to the quantum
critical point.
Finally, we discuss the emergent symmetry in the low

energy symmetry-broken regime. The ground state energy
with n domain walls (n > 1) does not depend on the
spatially uniform vector potential A, implying an emergent
rank-two gauge symmetry [46]. In addition to the vanishing
superfluid stiffness, the emergent symmetry may be rel-
evant to the several interesting features discussed in this
Letter. Understanding the relation between this emergent
symmetry and the slow dynamics in the symmetry-broken
regime is an interesting future direction.
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