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The issue of reversibility in hydromechanical sprinklers that auto-rotate while ejecting fluid from
S-shaped tubes raises fundamental questions that remain unresolved. Here, we report on precision
experiments that reveal robust and persistent reverse rotation under suction and a model that accounts for
the observed motions. We implement an ultralow friction bearing in an apparatus that allows for free
rotation under ejection and suction for a range of flow rates and arbitrarily long times. Flow measurements
reveal a rocketlike mechanism shared by the reverse and forward modes that involves angular momentum
flux, whose subtle manifestation in the reverse case stems from centrifugal effects for flows in curved
conduits. These findings answer Feynman’s long-standing question by providing quantitatively accurate
explanations of both modes, and they suggest further inquiries into flux-based force generation and the
roles of geometry and Reynolds number.
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Puzzles, paradoxes, and thought experiments in physics
play the important role of probing abstract concepts in
concrete contexts. An enduring riddle in fluid mechanics
popularized by Richard Feynman pertains to a type of
auto-rotating lawn sprinkler that spins when fluid is
expelled from its S-shaped tubes: Does the sprinkler also
rotate if fluid is instead sucked in, and if so, in what
direction [1–3]? While flows are certainly irreversible in
the inertial regime [4], the consequences for the dynamics
of the reverse sprinkler remain unclear. The problem
invites reasoning based on fundamental principles while
also exposing subtleties, for example, in the application of
momentum conservation to systems with sources, sinks,
or otherwise open and subject to mass flux and flow
throughput [5,6]. The fluid dynamical complexities per-
tain to flow-structure interactions involving chiral geom-
etries and flows due to suction into orifices [7–10], as jets
emitted from moving bodies [11–13], and in curved
conduits [14–16], all of which may depend on the strength
of driving or Reynolds number.
Conflicting answers to Feynman’s question have come

from past studies that employ principle-based reasoning
and fluid mechanical argumentation. Applications of
angular momentum conservation have predicted no rotation
[17,18] or reverse rotation opposite to the sense of the
forward sprinkler [19,20]. The effects of viscosity and
turbulence have been invoked as possible causes of reverse
rotation in steady state [20–22]. Other work argues for
reverse torques by appealing to the distorted flow and
pressure distribution in curved pipes [23]. The challenge of
such approaches, and perhaps cause of the disagreements,
is they rely on untested assumptions (e.g., state of the flow)

and do not furnish testable predictions that would justify
the focus on one effect over others.
The thought experiment has been turned into a real one,

as done by Feynman and later by others in systems
involving S- or L-shaped rigid tubes connected to flexible
hosing whose twisting motions are observed [17,24–26].
These studies report a transient effect but no response in
steady state. Other experiments employing a central hub
mounted on rotary bearings report various outcomes under
suction: no steady-state rotation [27,28], steady-state
reverse rotation [23,29,30], and unsteady motions includ-
ing changes in direction [29]. These inconsistencies may be
due to bearing friction, which was overcome with a floating
sprinkler but whose limited run times did not distinguish
transient and steady-state outcomes [31]. Other experi-
ments report rotations of either sense for modified internal
geometries [28,30]. Hence, the dynamics may be sensitive
to details of the geometry.
Here, we answer Feynman’s question through precision

experiments on freely-rotating and long-running sprinklers,
measurements of their flow fields, and a model whose
quantitative predictions are tested and validated. Our
approach exploits surface tension effects to both float
the sprinkler at the water surface and permit free rotation
in response to suction or expulsion. A cut-away view in
Fig. 1(a) shows the sprinkler’s construction. Arms formed
from curved tubes emanate from a cylindrical hub with
closed bottom. An external siphon tube is inserted through
an opening in the top to withdraw or inject fluid. The
annular top breaches the free surface and induces down-
ward-deflected menisci on its inner and outer perimeters.
Slight deflections are achieved by adding air to an internal
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cavity of the hub such that the system is slightly negatively
buoyant, with surface tension making up the difference to
achieve vertical force balance. The downward menisci
interact with the upward menisci on the siphon tube and
an outer ring, both made of hydrophilic glass. The repulsive
interaction between oppositely signed menisci [32–34]
ensures that the sprinkler remains stably centered while
free to rotate. Thus, the sprinkler is the rotor and the
glass surfaces serve as stators in a rotational bearing that,
lacking any solid-solid contacts, has extremely low friction.
Details of the experimental systems are provided in the
Supplemental Material [35].
The surrounding components allow for the control of the

flow throughput—both direction (suction or expulsion)
and magnitude—as well as time-resolved tracking of the
sprinkler’s rotation. Figure 1(b) shows the operation under
suction. A side tank of lower water level draws fluid
through a siphon from the main tank, whose level is
maintained by a pump and overspill system. The level in
the side tank is also held constant by an overflow that is
intercepted for measurement of the volumetric rate Q
through the sprinkler. Thus, the system runs indefinitely
under constant conditions. The driving pressure is propor-
tional to the difference h in water levels, which is controlled
and varied via the height of the side tank. Expulsion is
achieved similarly: the siphon flow is reversed by raising
the side tank higher than the main tank, with the pump
replenishing the former and Q measured from the latter. In
both modes, a side-view camera (not shown) images
markers on the sprinkler hub to measure the instantaneous
rotation rate ΩðtÞ.
When fluid is expelled from the sprinkler, it rotates in the

expected “forward” direction with the orifices of the arms
trailing, as shown in Fig. 2(a) and Supplemental Videos 1
and 2 [35]. Displayed as the red curve are representative
time series data of the sprinkler’s angular velocity for flow

that is impulsively started at t ¼ 0 and quickly reaches a
constant value of Q ¼ 2.0 cm3=s. Steady-state rotation
with positive time-averaged angular velocity Ω > 0 (red
dot) is reached after about a minute, as verified in repeated
trials (gray curves). When fluid is instead suctioned in at the
same jQj, the sprinkler rotates in “reverse” with Ω < 0 and
the orifices leading. The blue curve and associated gray
ones show a transient burst followed by a terminal state
with significant fluctuations but definitively negative time
average Ω < 0 (blue dot). The reverse mode is about 40
times slower than the forward, and hence the two cases are
displayed with different vertical scales. Videos 3 and 4
show that reverse motion is observed for sprinklers of
opposite chirality [35], which indicates that the cause is
intrinsic propulsion rather than an external influence (e.g.,
the Earth’s rotation or background flows).
These findings are robust across varying Q or, equiv-

alently, the pipe flow Reynolds number Re ¼ 2ρVa=μ.
Here, ρ and μ are the fluid density and viscosity, respec-
tively, and V ¼ jQj=2πa2 is the section-averaged flow
speed through each arm of inner radius a. As shown by
the plots of the measured Ω in Fig. 2(b), the terminal speed
of the forward sprinkler increases quasilinearly with Q
or Re. In contrast, the reverse case has opposite sign,
uniformly lower magnitudes, stronger relative fluctuations,
and a markedly nonlinear trend. For the lowest Re tested,
the reverse motion is weak and undirected with Ω ≈ 0. The
potential roles of bearing friction and manufacturing errors
are discussed in the Supplemental Material [35].
We propose that both modes of the sprinkler are driven

by a common mechanism similar to the classical rocket.
This hypothesis is intuitive for the forward case, for which
flow visualizations support the view as a rotational analog
to the rocket. Video 5 and the photograph of Fig. 3(a) are
obtained by adding green dye to the supplied fluid, which
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FIG. 1. Experimental setups. (a) Cut-away schematic of the floating sprinkler, which consists of tubular arms connected to a
cylindrical hub. Capillary interactions with a siphon tube and outer ring center the sprinkler and allow it to rotate freely. (b) Flow control
apparatus (not to scale) operating in suction mode. A siphon draws water through the sprinkler at rateQ, and a valve allows for impulsive
start-up. Overflows maintain the levels in the main and side tanks. (c) Flow imaging with a laser sheet illumination of particle-laden
water. A camera captures photos and videos in the regions of interest.
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fills the hub and exits out the arms [35]. The lab-frame
speed of the exhaust is slowed due to the oppositely sensed
motion of the sprinkler, and this manifests as the gradual
widening of the spiral-shaped streaklines. A closer view is
provided in Video 6 and the time-exposed photograph of
Fig. 3(b) that employs the setup of Fig. 1(c) involving laser-
sheet illumination of microparticles seeded throughout the
fluid [35]. Concentrating on a downward-moving outlet, an

oppositely directed jet flow is revealed by the long
pathlines.
Just as the conventional rocket analysis relates propul-

sion forces to momentum flux from the exhaust, we
consider a model of the thrust torque derived from the
flux of angular momentum out of the outlets. Considering
the normal velocity profile Vðx; zÞ relative to an outer
orifice and across its cross section, our calculations identify
a flux-based thrust torque τFT ¼ −2

R
ρxV2ðx; zÞdA ¼

2ρXOOQ2=3πa2. Here, XOO measures the appropriate
projected distance of the outer orifice from the hub center,
and we assume a parabolic or Poiseuille flow profile issuing
from the arms [4,5]. The derivation in the Supplemental
Material employs a control volume that encloses the
sprinkler with portions of its surface spanning the pipe
outlets [35]. The thrust τFTðQÞ is plotted as the red curve in
Fig. 2(c). Predicting the resulting spin rate of the sprinkler
requires a model of rotational drag and its dependence on
Ω. As detailed in the Supplemental Material [35], we
estimate the skin friction and pressure drag contributions
from the various components and surfaces of the structure
[36,37]. Balancing flux-based thrust, which is reduced due
to the retreating motion of the orifices, with the drag torque
yields a prediction for ΩðQÞ that is plotted as the red curve
in Fig. 2(b). The model shows strong agreement with the
experimental measurements, indicating that the rocket
mechanism quantitatively accounts for the forward mode.
The linear trend Ω ∼Q results from the scalings of thrust
as Q2 and drag as Ω2 for high Ω.
Flux from the outlets is one of many potential contri-

butions to thrust. The general control volume analysis [5]
presented in the Supplemental Material shows that this term
appears among others associated with fluxes, changes of
momentum, and surface stresses [35]. Nonetheless, our
model’s good accounting of the forward mode motivates
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FIG. 3. Flow visualizations in the forward (F) and reverse (R)
modes. All scale bars are 1 cm and flow rates jQj ¼ 1 cm3=s.
(a) Streakline photograph using fluorescein dye. (b) Pathline
image of the emitted jet taken at a moment when the outlet moves
downward. (c) Pathlines of the suction flow near an upward
moving outlet in reverse mode. (d) The jets inside the hub
undergo a glancing collision and form four vortices.
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FIG. 2. Rotational dynamics in forward and reverse and across flow rates. (a) Instantaneous angular velocity ΩðtÞ for expulsion (red)
and suction (blue) for flow of volumetric rate jQj ¼ 2.0 cm3=s initiated at t ¼ 0. The gray curves are repeated trails. (b) Long-time
average or terminal velocityΩ versus fluxQ or Reynolds number Re for experiments (dots) and a model (squares). (c) Model prediction
for torque τFT due to angular momentum flux. Inset: dimensionless torque coefficient CT versus Re. In all plots, bars on experimental
data represent standard deviations and are suppressed when smaller than the symbol. Bars on model data are propagated from measured
fluctuations in the particle image velocimetry (PIV) flow data.
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the evaluation of this same source of thrust for the suction
mode, whose flows are altogether different due to irrevers-
ibility. Indeed, pathline visualizations at the outer terminus
of the arm [Video 7 and Fig. 3(c)], which now functions as
an inlet, reveal the expected sinklike flows [35]. The
functional outlets reside inside the hub, whose internal
flows are visualized in Fig. 3(d). We observe a robust flow
pattern consisting of four vortices separated by the two
primary jets from the outlets that meet near the center of the
hub and two secondary outgoing jets that are produced as a
result of the collision. For increasing Re, a prominent
asymmetry develops in the secondary jets, which form an
increasingly large angle away from vertical. Supplemental
Videos 8, 9, and 10 document this trend [35].
These observations motivate a closer interrogation of

the flow exiting the pipe inside the hub. Focusing on the
region indicated in Fig. 3(d), we capture high-speed video
to extract time- and space-resolved maps of the flow
via particle image velocimetry (PIV) [38–40]. Method
details and errors are given in the Supplemental Material
[35]. Figure 4(a) shows sample transects of the jet flow in
a static sprinkler for appreciably large Re ¼ 300,
revealing a strongly skewed profile with the velocity
maximum displaced from the pipe centerline. Not shown
is the other jet, whose skewness in the opposite direction
reflects the chiral arrangement of the arms. The asym-
metric primary jets meet in a glancing collision that gives
rise to the angled secondary jets of Fig. 3(d). Further, the
skewness becomes more pronounced with increasing Re,
as documented by the extracted profiles VðxÞ displayed in
Fig. 4(b). Normalizing each by its maximum yields
the curves of Fig. 4(c) that show increasingly strong
asymmetries.
Considering the inner orifice of each arm as an effective

outlet for the reverse sprinkler, we analyze the profiles to
determine the momentum flux and thrust torque. The
derivation in the Supplemental Material involves a control
volume selected such that portions of its surface span the

inner termini of the pipes [35]. Because we measure the
flow along a transect, the velocity field over the disk-
shaped surface of the outlet must be interpolated to
compute the flux integral and associated thrust
τFT¼−2

R
ρxV2ðx;zÞdA. There is no flux and no torque

for parabolic flow or any other symmetric profile, so
skewness is essential. The computed torque is shown as
the blue markers in Fig. 2(c), with the bars indicating
fluctuations propagated from the flow measurements. The
sign of the torque is set by the skewness and proves to be
consistent with reverse motion. Balancing against drag
yields predictions for ΩðQÞ that are shown as the open
squares in Fig. 2(b). The propagated fluctuations inΩ are of
similar magnitude to those measured, suggesting that
unsteady flows play a role. The time-averaged motions
and nonlinear trend are well predicted, and we thus
conclude that flux-based torque drives the reverse sprinkler.
The jet asymmetry is consistent with secondary flows in

curved pipes that have been argued as central to the
sprinkler problem [23]. Long, slender pipes of constant
curvature κ—i.e., helical tubes—are well studied as the
Dean flow problem [14–16,41–43], which has the control-
ling parameter De ¼ Re

ffiffiffiffiffi
aκ

p
. For De of order 10, centrifu-

gal effects induce a transition from the typical parabolic
profile to one in which the velocity maximum is displaced
to the outside of the bend [44,45]. Although the sprinkler
arms do not satisfy the requisite geometry, we may evaluate
De by associating κ with the curvature of the elbow. Close
inspection of Figs. 4(b) and 4(c) shows that Re ≈ 100–200
or De ≈ 40–80 marks the range of significant distortion,
with lower values yielding symmetric flow and higher
values tending to saturate on a strongly skewed profile.
These trends are reflected in the torque, as made apparent
by the thrust coefficient CT ¼ 2τFT=ρV̄2a3 plotted in the
inset of Fig. 2(c). The rise and plateau of CTðReÞ
correspond respectively to the turn-on and saturation of
skewness, and these effects underlie the nonlinear response
of ΩðQÞ seen in Fig. 2(b).

0

1

V~

0 1-1
x/a

Re
De

0

50

100

150

0

100

200

300

400

Re

De

0 a=0.2-0.2
0

5

10

15

V
 (

cm
/s

)

x (cm)

V

x
(a) (b) (c)R

FIG. 4. Flow field measurements near the internal orifice for the reverse sprinkler. (a) Flow profiles along several transects for
Re ¼ 300 extracted from video via particle image velocimetry (PIV). (b) Profiles VðxÞ across the inner orifice and for varying Reynolds
and Dean numbers (color bar), with temporal fluctuations (�1 standard deviation) represented by colored bands. (c) Profiles normalized
by their maximum values.
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These results identify a rocketlike mechanism involving
angular momentum flux from outlets as a primary source of
propulsion in both modes of the sprinkler. The forward
mode is a direct rotational analog to a rocket in which jets
are ejected outward and circumferentially. The reverse
mode is subtle due to its jets being aimed inward but
which are effectively offset from one another due to their
skewness. These results are shown to hold for the standard
S-shaped sprinkler over Re∈ ½25; 400�.
This mechanism is distinct from previous hypotheses.

Rueckner associates reverse motion with a swirling flow in
the hub that rotates oppositely to the sprinkler [30]. This
picture relates to Mungan’s earlier reports of rotation but
only for designs in which the arms enter the hub nondia-
metrically—i.e., displaced or angled away from the center—
presumably setting up an internal vortex [28]. These works
report no rotation for the standard sprinkler design, a result
inconsistent with our findings and which may be due to
bearing friction. Rueckner claims that no vortex is present,
whereas we document two pairs of counter-rotating vortices,
a flow structure that we view as a side effect of the skewed
jets. Our mechanism explains Mungan’s variants in terms of
momentum flux from internal jets. Beals cites the distorted
profile for curved pipe flows to argue that pressure
differences in the elbow region drive reverse rotation [23].
Jenkins had previously argued for no rotation due to two
countervailing pressures [21], which Beals rebuts by assert-
ing that forces may cancel and yet a torque is produced if
the pressures are differently distributed. However, slower
rotation was reported for a sprinkler variant with elongated
arms [23], a result that contradicts the elbow pressure
mechanism. Our mechanism predicts that such a design
should indeed move slower due to symmetrization of the
flow during its longer path to the hub and consequent
decrease in momentum flux. Future work should revisit this
design and compare experiments with model predictions.
Our results provide an answer to the Feynman sprinkler

problem in a form missing from previous studies: a
mechanism is translated into a concrete model whose
quantitative predictions are validated against experimental
measurements under documented conditions. Future stud-
ies aimed at further exploring the roles of Reynolds number
and sprinkler geometry would benefit from such an
approach and from the methods developed here.
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