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Ring quantum cascade lasers have recently gained considerable attention, showing ultrastable frequency
comb and soliton operation, thus opening a way to integrated spectrometers in the midinfrared and terahertz
fingerprint regions. Thanks to a self-consistent Maxwell-Bloch model, we demonstrate, in excellent
agreement with the experimental data, that a small but finite coupling between the counterpropagating
waves arising from distributed backscattering is essential to stabilize the soliton solution.
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Introduction.—A dissipative soliton is a localized wave-
form exhibiting the unique property of traveling unper-
turbed through nonlinear and dispersive media while
experiencing gain and loss [1–3]. These structures appear
in various optical, but also other physical systems, and there
has been growing interest in their occurrence in passive and
active microcavities [4–8]. An active microresonator can be
realized by a semiconductor gain medium embedded in a
ring cavity. Recently, ring quantum cascade lasers (QCLs)
received considerable attention, as these devices showed
self-starting frequency comb operation with solitonlike
spectra [8–11]. The QCL exploits optical intersubband
transitions in the conduction band of a multi-quantum-well
heterostructure to access large portions of the midinfrared
and terahertz regimes [12]. In Fabry-Pérot QCLs, comb
generation arises from four-wave-mixing nonlinearities
in which dynamical spatial hole burning (SHB) plays a
dominant role [13–18]. The Kerr nonlinearity inside a QCL
mainly originates from the fast gain saturation, which
makes the four-wave mixing very broadband [19]. The
absence of SHB for unidirectional propagation in ring
QCLs would indicate physics of comb formation that is
different from that in Fabry-Pérot resonators [15]. An
explanation for multimode operation in ring QCLs was
given based on phase turbulence and the linewidth
enhancement factor (LEF), where a finite LEF makes gain
saturation act as an effective Kerr nonlinearity [10,20].
Injected ring QCLs have been predicted to produce either
phase or cavity solitons, dependent on the strength of the
injection signal [21]. A generalized form of the Lugiato-
Lefever equation can be used to model the system dynam-
ics [22,23]. However, the direct simulation of solitons in
free-running ring QCLs with realistic parameters and

results as observed in experiment [8] is still missing.
Using Maxwell-Bloch theory [24,25], we reveal the physi-
cal mechanisms and identify the requirements leading to
the recent experimental observation of solitons in free-
running ring QCLs. Our approach shows that distributed
backscattering in the cavity is necessary for stable soliton
solutions, contrasting previous work, which assumed pure
unidirectional operation to be favorable [8]. Furthermore,
this differs significantly from previous work that introduced
just a single or, at most, a few macroscopic cavity
interruptions, yielding standing wave patterns [10,26,27].
In our case, considering both propagation directions at once
reveals that a fainter counterpropagating wave plays a
crucial role in soliton stability. Under these circumstances,
a single symmetric Lorentzian gain shape associated with
the lasing transition in the Maxwell-Bloch model suffices
to obtain the measured system properties. Direct compari-
son with experiment yields excellent agreement, thus
giving valid and novel insights into the dynamics of
quantum cascade ring lasers.
Theoretical model.—Our approach to accurately model

the dynamics in a ring QCL is based on the one-
dimensional multilevel Maxwell-Bloch equations [25,28].
Hence, we simulate the density matrix dynamics and
electric field in propagation direction x and time t, with
periodic boundary conditions to mimic the ring cavity. To
obtain an initial density matrix, the electron transport in the
QCL active region is modeled using the ensemble
Monte Carlo method [29,30]. A set of eigenstates is
obtained by solving the Schrödinger-Poisson equation
for seven levels per period, using EZ states as a basis
[31]. The obtained gain of the structure, as used in [8],
exhibits an unsaturated value of g0 ¼ 16.5 cm−1 at the
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center frequency fc ¼ 40.89 THz (see Sec. I.A. of the
Supplemental Material [32] for more details). The time
evolution of the density matrix, describing the state of the
multilevel quantum system, is governed by the Liouville–
von Neumann master equation, using the rotating wave
approximation [25]. The closed set of equations used for
the time evolution of the density matrix can be found in
detail in [33]. The electric field amplitude in the slowly
varying amplitude approximation is described as the super-
position of a left- and right-traveling wave. For both
components E�, a classical propagation equation can be
derived from Maxwell’s equations, given by

∂tE� ¼∓ vg∂xE� þ f�ðx; tÞ − lE� − ivg
β2
2
∂
2
t E�: ð1Þ

In Eq. (1), we consider losses l, the group velocity vg, as
well as the background group velocity dispersion (GVD) β2
of the effective material, as they have a non-negligible
influence on frequency comb formation [36]. The second
term f�ðx; tÞ in (1) refers to the polarization originating
from the quantum system. An explicit expression for
f�ðx; tÞ is derived from the density matrix equations in
Sec. I.C. of the Supplemental Material [32].
In ring lasers, the counterpropagating wave components

Eþ and E− are commonly referred to as clockwise (CW)
and counterclockwise (CCW) fields. In Eq. (1), Eþ and E−

are not coupled directly but may only interact via the
density matrix. As in ring lasers, cross-gain saturation
exceeds self-gain saturation, a spontaneous symmetry
breaking between the two counterpropagating fields will
occur for large enough pumping [34,35]. In real devices,
considerable backscattering may occur due to fabrication
defects, introducing a finite optical coupling between these
fields, even after symmetry breaking. The central message
of this Letter is that this coupling between the counter-
propagating modes in the free-running ring cavity is an
essential element for soliton formation and stability. In
Fig. 1, two cleaved cross sections of waveguides from the
same wafer but from different fabrication runs are exem-
plarily shown, captured by a scanning electron microscope.
In Fig. 1(a), a device clearly exhibiting microscopic defects

surrounding the active region is depicted. Since the
electromagnetic field overlaps with these defects, it expe-
riences an impedance mismatch, leading to localized
reflections. As we assume the presence of many such
defects throughout the cavity, this effect sums up to
significant backscattering. A device from the same fab-
rication run, therefore having comparable backscattering,
clearly showed soliton operation [8]. In Fig. 1(b), a cross
section of a defect-free cavity from another fabrication run
is presented for comparison. In similar devices, only
minimal backscattering is present, and pure single-mode
operation was experimentally observed in free-running
operation.
Our model simultaneously considers both propagation

directions (CW and CCW) and couples them through
backscattering. The microscopic defects are introduced
by subdividing the cavity into numerous regions with a
small field reflection coefficient r defined as ΔE� ¼ rE∓,
at each interface, where ΔE� denotes the resulting field
change. Thus, both field components experience the same
relative amount of reflection and compete for the available
gain, leading to a strongly nonlinear relation between r and
the power in the reflected wave. Therefore, a sufficient
number of scatterers with small reflections is essential, such
that both field directions remain traveling waves (see also
Supplemental Material [32] Sec. I.B).
Results.—As cavity losses typically exceed backscatter-

ing by orders of magnitude, the field backscattering
coefficient α can hardly be retrieved by reflection mea-
surements. Therefore, α is estimated by the ratio of the
symmetry-breaking current Isym to the threshold current Ith
[34,37]. The Maxwell-Bloch equations inherently capture
the full dynamics when varying the pump current and
simulating both propagation directions. In order to extract
α, we perform a current sweep, locate the symmetry-
breaking point, and compare the results to measured
light-current (LI) curves. Assuming a mainly photon-driven
current, a full sweep can be approximated by varying the
dipole moment μ accounting for the band-edge tilting, and
the resulting change in the wave function overlap with
increasing bias [38]. The measured and simulated LI curves
are shown in Fig. 2 and yield α ≈ 0.01 cm−1 for Fig. 2(a) an
imperfect cavity and α ≈ 0.0001 cm−1 for Fig. 2(b) a
defect-free cavity (for comparison, the field losses
are ≈1.5 cm−1). Using 100 regions with r ¼ 0.0008 in
Fig. 2(a) and r ¼ 0.0001 in Fig. 2(b) at each interface, we
obtain very good agreement of the intracavity power and
the ratio Isym=Ith. The slight remaining difference can be
mainly attributed to the fact that only photon-driven current
is varied in the simulation. Additionally, the experimental
setup will always have incomplete mode contrast, as
reflections of the field in the main propagation direction
on the InP-air interfaces can be captured. This may lead to
an overestimation of the actual intracavity intensity of the
counterpropagating mode in the measurement.

(a) (b)

FIG. 1. Images of cleaved waveguide cross sections obtained
using a scanning electron microscope. (a) Device with defects and
thus increased backscattering. (b) Defect-free device from an-
other fabrication run.
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When a certain amount of backscattering is present, as
shown in Fig. 2(a), multimode operation can be sustained in
a steady state, and soliton generation is possible. This bias
region is shaded in blue (gray) color for the simulation.
Different multimode operation regimes besides single
soliton operation, such as double pulsing and more irregu-
lar comb shapes, are observed, in agreement with exper-
imental observations [8] (see Figs. 4 and 5 of the
Supplemental Material [32]). When decreasing the reflec-
tion value, the onset of stable multimode operation gets
shifted to higher bias currents. Choosing r ¼ 0.0001, as in
Fig. 2(b), only single-mode spectra were obtained in the
considered bias region, as also confirmed by experiment.
Therefore, with a reflection of r ¼ 0, multimode operation
will be stable only at the Risken-Nummedal-Graham-
Haken (RNGH) instability bias, which is 9 times the lasing
threshold [39,40]. This instability bias is lowered by
interference between counterpropagating fields [13] arising
here due to defect-induced backscattering. It thus opens up
the possibility of multimode operation in a reasonable bias
range of ring QCLs. At the bias point considered for the
long-term simulation [orange cross in Fig. 2(a), results of
Fig. 3], the minimum reflection for stable soliton operation
was found to be r ≈ 0.0006, i.e., slightly below the value of
Fig. 2(a). Furthermore, the defect-free device of Fig. 2(b) is
for realistic biases clearly below the multimode threshold.
A larger value of α, i.e., increased backscattering, would
bring the multimode bias closer to the lasing threshold,
until standing wave dynamics become dominant. For
further analysis, we choose the point marked with the
orange cross in Fig. 2(a), as this point contains the extracted
dipole element at the bias voltage where the self-consistent
Monte Carlo simulation has been performed.
We simulate over 6000 round-trips, of which the last

2000 are postprocessed as a steady-state solution. The
overall intracavity power of roughly 480 mW fits well with
the one of the experimental device in [8]. Applying a

Fourier transform to the converged field yields the spec-
trum shown in Fig. 3(a). The characteristic sech-square
shape of soliton operation can be observed in the spectral
range above the center frequency. This envelope very well
describes 25 of the comb teeth, which is in near-perfect
agreement with the experimental results. The individual
comb lines do not show an intermodal phase difference,
which suggests that they are phase locked, except for the
center mode, which is shifted by π (see Sec. II.A. of the
Supplemental Material [32]). The comb exhibits a clear
beat note at roughly 25 GHz. The linewidth is below our
numerical frequency resolution of ≈5 MHz. The inclusion
of spontaneous emission noise [41] does not significantly
influence the spectral phase relations and the beat note
linewidth. Unprocessed temporal results of the last three
round-trips are shown in Fig. 3(b) and reveal an amplitude
modulation in the form of an intensity dip. The corre-
sponding temporal phase shown in Fig. 3(c) exhibits a 2π
jump at each amplitude dip, bearing remarkable similarity
to the injected phase soliton predicted in [21]. Thus, the
counterpropagating field might be interpreted as a weak
self-injecting signal. The intensity features a strong con-
tinuous wave background, but various applications of
optics are based on short, background-free pulses. A
reliable generation of such in the midinfrared region holds
large technological potential. As only one side of the
spectrum follows the characteristic sech-square shape of
a Kerr-type soliton, the authors of [8] applied an optical

(a) (b)

FIG. 2. Simulated and experimental intracavity power versus
normalized bias current. In (a) significant and in (b) negligible
backscattering α is present. The shaded area in (a) marks the
multimode regime observed in simulations. The orange crosses
mark the bias used for dynamical simulations.

(a)

(b)
(d)

(c)

FIG. 3. (a) Intensity spectra of simulation and experiment
showing a soliton shape. (b) Simulated intracavity power (P)
of the main propagation direction showing the propagating
soliton. (c) Corresponding phase ðφÞ profile. (d) Filtered intensity
contributions of the time trace in (b), with the normalized
measured and filtered pulses from dual-comb spectroscopy (gray
dashed) shown for comparison.
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filter to isolate single pulses. Accordingly, we filter the
simulated spectrum, such that the blue (dark gray) shaded
part of Fig. 3(a) contains field components with frequencies
f ≤ fc and the orange-shaded (light gray) part contains the
contributions with f > fc. Separately transforming each
filtered comb part to the time domain yields two intensity
contributions plotted in blue (dark gray) and orange
(light gray) colors, respectively, in Fig. 3(d). The filtered
intensities show a pulsed waveform superimposed to a
dispersive continuous background wave, in complete
agreement with the experiment. The pulse width is
2.6 ps, which is very close to the measured value of 3.1 ps.
An intuitive understanding of the physical mechanisms

that enable soliton generation and stabilization can be
obtained by investigating the spatiotemporal evolution of
the optical power in the cavity, as depicted in Fig. 4 for the
main propagation direction. In Fig. 4(a), sufficient back-
scattering is included to be above the multimode stability
threshold [as in Figs. 1(a) and 2(a)], while Fig. 4(b) shows a
“clean” cavity below the backscattering threshold [as in
Figs. 1(b) and 2(b)]. In both cases, the dynamics of the first
≈100 round-trips are nearly identical. The optical field
builds up from random, rapidly oscillating fluctuations.
These fluctuations experience gain with limited bandwidth,
leading to their decay or a fusion into localized field
structures. In Fig. 4(a), several localized structures have
formed at around 250 round-trips. Two of them cancel out
after around 750 round-trips where only a single localized
structure remains, traveling as a stable soliton. Its velocity
slightly deviates from the exact speed of light in the cavity,
as for the injected phase soliton [21], but we corrected this
offset for better visibility. The spatiotemporal evolution of
the counterpropagating field does not show significant
intensity modulations and can be found in Fig. 8 of the

Supplemental Material [32]. In Fig. 4(b), localized field
structures form in the first few 100 round-trips, but the
modulation eventually fades out due to insufficient stabi-
lization by a counterpropagating wave. The spectrum
shows a solitonlike shape in the beginning, similar to
combs induced by phase turbulence [10]. But as the
temporal amplitude modulation continuously decreases,
side modes disappear, resulting in single-mode operation.
This finding is experimentally confirmed, as free-running
ring QCLs with vanishing backscattering only sustain
single-mode operation in steady state for all realized
devices.
Discussion.—As described above, adding the distributed

backscattering allows the CCW and CW components to
interact and stabilize the soliton. In order to identify the
mechanisms that lead to the generation of a soliton and its
preservation, we shall discuss a further feature of our
detailed model. Unlike in other models for ring QCLs,
optical interference effects, like SHB, are present from the
beginning of the simulation. During the field formation
process, when symmetry breaking has not yet occurred,
CCWand CW components carry similar amounts of energy
(first approximately ten round-trips). Setting the population
grating terms in the density matrix equation to zero
enforces the absence of SHB. For this case, in the presence
of backscattering, both field components stay equally active
over the whole simulation time. Consequently, the terms
associated with SHB significantly contribute to cross-gain
saturation, such that symmetry breaking occurs despite the
presence of backscattering, which favors bidirectional
operation. Therefore, we conclude that optical interference
effects are crucial in the field formation dynamics of free-
running ring QCLs. But also in steady state, the interaction
between the asymmetric CW and CCW waves provides a
whiff of SHB, which triggers multimode operation and
lowers the threshold for the RNGH instability [13]. Thus,
the main advantage of the ring configuration over Fabry-
Pérot cavities is that the amount of backscattering, and
hence SHB, can be adjusted. This is especially important in
the context of soliton operation since, besides its beneficial
effect on multimode operation, excessive SHB induces
undesired phase and amplitude instabilities [17].
Frequency combs in free-running ring QCLs are domi-

nated by the phase dynamics and linked to the balance of a
Kerr-type nonlinearity with GVD [10]. Both parameters are
typically assumed to be constant, and stable multimode
operation is obtained when they are correctly balanced,
even though only considering one propagation direction.
Our model intrinsically features these quantities as fre-
quency- and intensity-dependent values [25] and yields the
characteristic phase turbulence during the field formation,
even without backscattering. However, the consequent and
repeatable vanishing of solitonic modulations that we
observe in unidirectional, free-running ring QCLs has
not been discussed so far, to the best of our knowledge.

(a)

(b)

FIG. 4. Intracavity power distribution in main propagation
direction for 3000 round-trips. (a) With backscattering, clear
localized structures emerge and remain stable unless they collide.
(b) Without backscattering, weakly modulated localized struc-
tures may form but eventually fade out.
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The complete density matrix equations used here fully
capture the tendency of QCLs to operate in single mode.
This effect dominates over the fragile multimode balance
generated by the interplay of nonlinearity and dispersion
and forces phase and amplitude modulations to diminish.
If, however, sufficient backscattering is present, the coun-
terpropagating field may stabilize the balance. It appears to
serve as a source of near-resonant injection, similar to the
results of weak external injection forming phase solitons in
[21]. Together with the weakly generated SHB, such a self-
feeding and phase referencing mechanism for the off-
resonant modes may suffice to overcome the single-mode
tendency. Thus, the backscattering is the crucial ingredient
to sustain the self-generated soliton of the ring QCL.
Conclusion.—We have shown that the occurrence of

distributed backscattering can explain the experimental
observation of solitons in an active ring cavity. The
symmetry breaking between both propagation directions
can be captured by sweeping the photon-driven current in
the Maxwell-Bloch simulations. The self-consistently cal-
culated seven-level system yields solitons that agree very
well with experiment regarding power, bandwidth, and
duration. By measurement and simulation, we have shown
that a fainter counterpropagating field induced by back-
scattering enables the formation of a stable localized field
structure corresponding to a self-injected phase soliton.
These results may open the way to reliable soliton gen-
eration in ring QCLs by custom-tailored cavity defects.
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