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Non-Abelian gauge fields are versatile tools for synthesizing topological phenomena, but have so far
been mostly studied in Hermitian systems, where gauge flux has to be defined from a closed loop in order
for vector potentials, whether Abelian or non-Abelian, to become physically meaningful. We show that this
condition can be relaxed in non-Hermitian systems by proposing and studying a generalized Hatano-
Nelson model with imbalanced non-Abelian hopping. Despite lacking gauge flux in one dimension, non-
Abelian gauge fields create rich non-Hermitian topological consequences. With SU(2) gauge fields, the
braiding degrees that can be achieved are twice the highest hopping order of a lattice model, indicating the
utility of spinful freedom to attain high-order nontrivial braiding. At both ends of an open chain, non-
Abelian gauge fields lead to the simultaneous presence of non-Hermitian skin modes, whose population
can be effectively tuned near the exceptional points. Generalizing to two dimensions, the gauge invariance
of Wilson loops can also break down in non-Hermitian lattices dressed with non-Abelian gauge fields.
Toward realization, we present a concrete experimental proposal for non-Abelian gauge fields in non-
Hermitian systems via the synthetic frequency dimension of a polarization-multiplexed fiber ring resonator.

DOI: 10.1103/PhysRevLett.132.043804

Open physical systems coupled to external environments
are described by non-Hermitian Hamiltonians that support
complex eigenvalues. Compared to closed systems, non-
Hermitian systems exhibit rich unique phenomena, such as
power oscillations [1–3], unidirectional invisibility [3,4], and
exceptional-point (EP) encirclement [5,6], which have no
counterparts in Hermitian systems. In addition to their bulk
invariants defined from eigenvectors [7–10] as in Hermitian
systems, non-Hermitian systems also exhibit eigenvalue
topology [11–21] due to the expansion of eigenenergies from
the real to the complex regime. Importantly, non-Hermitian
eigenstates of a nonvanishing eigenvaluewinding number are
all localized at the end of open systems, known as the non-
Hermitian skin effect (NHSE) [7,10,21,22]. The NHSE has
been implemented widely in photonics [18,23–26], acoustics
[27–29], mechanics [30–32], and electric circuits [33–38].
Moreover, synthetic gauge fields have been introduced for
better controlling non-Hermitian systems [39–44], but most
efforts have been dedicated to Abelian gauge fields.
Non-Abelian physics has recently attracted a lot of

attention in acoustics and photonics [45–66]. In particular,
non-Abelian gauge fields, leveraging the internal degrees of
freedom of particles, are a synthetic control knob for
realizing non-Abelian physics in engineered physical
systems [67]. These gauge fields enable synthetic spin-
orbit interaction and can be used for creating non-Abelian
Aharonov-Bohm interference and lattice models featuring
complex gauge structures. Moreover, recent experiments
have demonstrated the possibility of creating and tuning
building blocks of non-Abelian gauge fields in fibers [47]

and circuits [68], indicating their applicability for large
lattice systems. The effectiveness of synthetic gauge fields
substantially relies on their dimensionality. In particular,
pure one-dimensional (1D) systems forbid the definition of
closed loops and the associated magnetic flux. Thus, synthe-
tic vector potentials, whether Abelian or non-Abelian, carry
little physical consequences in 1D Hermitian systems.
Although the 1D spin-orbit interaction realized with cold
atoms [69] seems to be a counterexample, an extra Zeeman
term has to be added for the Rashba-Dresselhaus gauge
fields to become nontrivial. So far, non-Abelian gauge fields
have seldom been explored in non-Hermitian systems, where
the dimensionality constraint above could be violated.
The Hatano-Nelson model [70] is a prototypical 1D

system that demonstrates the NHSE because of its nonre-
ciprocal hoppings. We first extend the model with U(1)
Abelian gauge fields as [Fig. 1(a)]

Ĥ0 ¼
X
m

JLĉ
†
meiθL ĉmþ1 þ JRĉ

†
mþ1e

iθR ĉm: ð1Þ

Here ĉ†mðĉmÞ is the creation (annihilation) operator at site
m, JLðRÞ is the real hopping amplitude leftward (rightward),
and θLðRÞ are the corresponding hopping phases. The con-
ventional Hatano-Nelson model is restored if θL ¼ θR ¼ 0.
One can reformulate Eq. (1) as H0ðkÞe−iθþ ¼ JLeiðkþθ−Þþ
JRe−iðkþθ−Þ, where θþ¼ðθLþθRÞ=2 and θ−¼ðθL−θRÞ=2.
As in Hermitian systems, a Peierls substitution of θ− acts
on the momentum k. Meanwhile, on the left-hand side, a
Peierls substitution of θþ acts on the complex energy, i.e., a
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rotation on the complex energy plane. Thus, the U(1) fields
only lead to trivial modifications to the Hatano-Nelson mo-
del. This is confirmed by the energy band shown in Fig. 1(a)
that exhibits a winding number w ¼ þ1 on the complex
energy plane, where w≡ð1=2πÞR 2π

0 ∂karg½EðkÞ−Eb�dk¼
sgnðJL−JRÞ, EðkÞ is the periodic boundary condition
(PBC) spectrum, and �1 indicates counterclockwise
(CCW) and clockwise (CW) rotation, respectively, around
a complex energy base pointEb inside the PBC spectrum on
the complex plane [12].
In contrast, the model gets substantially modified with

SU(2) non-Abelian gauge fields [Fig. 1(b)],

Ĥ ¼
X
m

JLĉ
†
meiθLσy ĉmþ1 þ JRĉ

†
mþ1e

iθRσx ĉm; ð2Þ

where σx and σy are Pauli matrices. Notably, in Eq. (2), both
the hopping amplitudes ðJL; JRÞ and the non-Abelian

hopping phases ðθL; θRÞ contribute to non-Hermiticity.
This feature distinguishes our system from a recent study
on non-Hermitian Aubry-André-Harper models [71],
where the non-Abelian on-site potentials alone do not
cause non-Hermiticity. The Bloch Hamiltonian of Eq. (2) is

HðkÞ ¼ AðkÞσ0 þ iJL sin θLeikσy þ iJR sin θRe−ikσx; ð3Þ

where AðkÞ ¼ JL cos θLeik þ JR cos θRe−ik and σ0 is the
identity matrix. The eigenenergy of Ĥ is given by

E�ðkÞ ¼ AðkÞ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2Lsin

2θLei2k þ J2Rsin
2θRe−i2k

q
: ð4Þ

Equation (4) permits EPs at kEP ¼ f�π=4;�3π=4g when

J2Lsin
2θL ¼ J2Rsin

2θR ð5Þ

the EP condition is satisfied, as shown by an example
spectrum in Fig. 1(c).
The two energy bands in Eq. (4) form the Hopf link in

(ReE, ImE, k) space (different from the exceptional-line
links in three-dimensional momentum space [72,73]). In
fact, the EP condition Eq. (5) is the phase transition of the
energy braiding between two types of Hopf links, defined
by a braid degree ν ¼ �2 [Fig. 1(d)], where

ν≡
Z

2π

0

dk
2πi

d
dk

ln det

�
Ĥk −

1

2
TrĤk

�
: ð6Þ

This braiding degree describes how many times the two
bands braid in the E − k space as k varies from 0 to 2π [18].
Figures 1(e)–1(g) confirm this transition, where Hopf links
of opposite braiding degrees [Figs. 1(f) and 1(g)] appear on
opposite sides of the EP phase transition [Fig. 1(e)].
Therefore, even though no gauge flux can be defined in
a 1D bulk, introducing non-Abelian gauge fields can
sufficiently drive non-Hermitian topological phase transi-
tions, which is impossible for 1D Hermitian systems.
Non-Hermitian energy braiding of the Hopf-link type has

been identified previously, but requires longer range
hopping, such as the next-nearest-neighbor (NNN) coupling
[18,19]. To seewhy the nearest-neighbor (NN) non-Abelian
hopping here enables the Hopf braiding, consider a mo-
mentum-dependent gauge transformation U ¼ diagð1; eikÞ.
The non-Abelian model HðkÞ [Eq. (3)] becomes H0ðkÞ ¼
U†HðkÞU,

H0ðkÞ ¼ AðkÞσ0 þ iJL sinðθLÞ
�
0 −ie2ik

i 0

�

þ iJR sinðθRÞ
�

0 1

e−2ik 0

�
; ð7Þ

which maps the NN non-Abelian hopping to NN and NNN
Abelian hoppings. Specifically, the blocks ð0; e�i2k; 1; 0Þ

(a) (b)

(c)

(e) (f) (g)

(d)

FIG. 1. Hatano-Nelson models with Abelian and non-Abelian
gauge fields. (a) Hatano-Nelson model with nonreciprocal U(1)
hopping phases and its single non-Hermitian band exhibiting a
winding number w ¼ 1. (b) Hatano-Nelson model with nonre-
ciprocal SU(2) hopping phases. (c) Two non-Hermitian bands
(Eþ and E−) exhibiting four EPs at momenta f�π=4;�3π=4g
(vertical gray lines). (d) Phase diagram of the non-Abelian
Hatano-Nelson model under JL=JR ¼ 7=6, featuring Hopf links
with braid degrees ν ¼ �2. Their phase transition accompanies
the appearance of EPs (black solid lines). (e)–(g) Braiding of the
two bands under the EP phase transition (e), ν ¼ −2 (f), and
ν ¼ 2 (g) Hopf-link phases in the (ReE, ImE, k) space. Here we
use JL ¼ 0.7, JR ¼ 0.6, and θR ¼ −1.38 throughout; θL ¼ þ1
for (a), (c), and (e), θL ¼ þ0.5 for (f), and θL ¼ þ1.5 for (g),
respectively, as shown by black dots in (d).
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were shown to enable a nontrivial Hopf braiding ν ¼ �2 in
Ref. [19]. Thus, the competition of the last two terms of
Eq. (7) results in the dichotomy ν ¼ �2 of the phase
diagram, although the original HðkÞ only features NN
non-Abelian hopping. H0ðkÞ also fosters the understanding
of the EP condition [Eq. (5)], under which a block in H0ðkÞ
proportional to ð0; 1 ∓ ie2ik; e−2ik � i; 0Þ appears, which is
defective at k ¼ �π=4 and k ¼ �3π=4. More generally,
shown in Sec. S1 of the Supplemental Material [74], SU(2)
non-Abelian gauge fields on the hopping order of n can
realize a higher-order braid degree of 2n, which reduces
the hopping-order requirement for creating non-Hermitian
topology via spinful particles.
Next, we show how non-Abelian gauge fields enrich the

NHSE. Figure 2(a) shows the simultaneous presence of
left-localized, right-localized, and extended eigenstates
under the open boundary condition (OBC) of H, absent
in the Abelian Hatano-Nelson model H0 featured by U(1)
gauge fields [see Eq. (1) and proof in Sec. S3.A [74] ]. To
explain this, we calculate the eigenspectra of H under PBC
and OBC. The PBC spectra of H form closed loops
surrounding the zero energy in the complex plane, indicat-
ing point-gapped bulk topology, while their OBC spectra
become open arcs [15,77,78]. In particular, the PBC
spectrum simultaneously exhibits CW and CCW winding
at the four corners and center of the Hopf link, respectively.
Consequently, the OBC arc enclosed by these sectors
should demonstrate leftward [blue in Fig. 2(a)] and right-
ward [red in Fig. 2(a)] localization, respectively. Mean-
while, extended states [green in Fig. 2(a)] also appear at the
boundary of the CW and CCW winding [green circles in
Fig. 2(b)]. This simultaneous left- and rightward localiza-
tion cannot be explained solely by the imbalanced hopping
amplitudes ðJL; JRÞ. The analysis above is further con-
firmed by the non-Bloch [7,14,17] [Fig. 2(c)] and winding-
number approaches [15], detailed in Secs. S3 and S4 of the
Supplemental Material [74].
We specifically discuss the properties of zero modes E ¼

0 (details in Sec. S3 [74]) under OBC. All of the associated
four non-Bloch solutions are z ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JR=JLe�iα

p
, where

α ¼ arctanð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2

p
=FÞ and F ¼ cosðθRÞ cosðθLÞ. All

roots of the characteristic polynomial have equal absolute
values, guaranteeing the existence of OBC zero modes, as
can be seen by the pinned crossing at E ¼ 0 in the complex
plane [Fig. 2(b)]. We also prove that the OBC zero modes
must be doubly degenerate (Sec. S3 [74]). Furthermore,
The absolute values of the zero-mode non-Bloch solutions
depend only on the ratio of the hopping amplitudes, which
indicates that even SU(2) gauge fields cannot modify
the localization direction of the zero modes (proof in
Sec. S3 [74]).
Nevertheless, the localization of nonzero modes can

be effectively manipulated by non-Abelian gauge fields. To
further elucidate the interplay between the imbalanced

hopping amplitudes and non-Abelian gauge fields, we
define a population contrast η in the OBC eigenstates as

ηðJL; JR; θL; θRÞ≡ ðnL − nRÞ=ðnL þ nR þ nEÞ; ð8Þ

where nL, nR, and nE are the number of left- and right-
localized and extended states, respectively. Figure 3 shows
the population contrast as a function of the gauge fields
ðθL; θRÞ under different choices of ðJL; JRÞ.
Figure 3(a) exhibits an equal partition of the left and right

localization under JL ¼ JR, where non-Abelian gauge
fields are the only origin of non-Hermiticity. η changes
sign across the 45° and 135° lines defined by sin2ðθLÞ ¼
sin2ðθRÞ, exactly the EP phase transition condition.
Notably, when JL ¼ JR, the PBC spectrum collapses into
an arc that overlaps with the OBC spectrum. Consequently,
the winding number of all OBC energy points is zero,
and all modes are extended. When θL ¼ f0;�πg or θR ¼
f0;�πg, Eq. (4) reduces to the conventional Hatano-
Nelson energy band under JL ¼ JR, whose PBC spectrum
also collapses into an arc and all OBC modes are extended;
however, there is no phase transition there. In Figs. 3(b)
and 3(c), as the imbalance between JL and JR appears and
increases, localization tunability of the non-Abelian gauge
fields becomes suppressed, as shown by the reduced red-
colored area. Crucially, localization tuning is most effective
(indicated by color variations in Fig. 3) near the EP phase
transition [Eq. (5) and solid black lines in Fig. 3].
Asymptotic analysis (Sec. S5 [74]) reveals that the

appearance of such tunability stems from the competition
between the effective NNN hoppings [the last two terms in
Eq. (7)]. Without loss of generality, we assume JL > JR
and obtain asymptotic expressions (details in Sec. S5) of

(a) (b) (c)

FIG. 2. Analysis of non-Hermitian skin effect. (a) Eigenstates
underOBCof the non-AbelianHatano-Nelsonmodel. (b)Winding-
number analysis: periodic- (black lines) and open-boundary (dots)
spectra exhibit opposite winding depending on the choice of base
energy Eb. Open-boundary eigenstates can be either extended
(green), left-localized (blue), or right-localized (red). The black
dot at the center denotes zero modes. (c) Non-Bloch analysis: the
unit circle (red) intersects the generalized Brillouin zone (blue),
indicating the simultaneous presence of left- (inside the unit circle)
and right-localized (outside the unit circle) states. The black circles
denote the zero-mode solutions. Here, JL ¼ 0.7, JR ¼ 0.6,
θL ¼ −2.5, θR ¼ −1.4.
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both eigen-energies E�ðkÞ≃
JLe�iθ0Leik þ JR cos θRe−ik; if jJL sin θLj ≫ jJR sin θRj;

ð9aÞ

AðkÞ� iJL

����sinθL
����eik

X∞
n¼0

Cn

��
JR sinθR
JL sinθL

�
2

e−i4k
�
n
;

if jJL sinθLj⪆jJR sinθRj; ð9bÞ

AðkÞ� iJR

����sinθR
����e−ik

X∞
n¼0

Cn

��
JL sinθL
JR sinθR

�
2

ei4k
�
n
;

if jJL sinθLj⪅ jJR sinθRj; ð9cÞ

JL cos θLeik þ JRe�iθ0Re−ik; if jJL sin θLj ≪ jJR sin θRj;
ð9dÞ

where Cn ¼ ð−1Þn−1ð2nÞ!
4nðn!Þ2ð2n−1Þ and θ0L=R ¼ θL=Rsgnðsin θL=RÞ. Far

away from the EP phase transition [Eqs. (9a) and (9d)], one
NNN hopping dominates over the other [Eq. (7)], and the
two eigenenergies are, respectively, governed by the
Abelian Hatano-Nelson model under different hopping

amplitudes—jointly forming a Hopf link. Specifically, a
complete left localization is guaranteed for Eq. (9a) be-
cause jJLj > jJR cos θRj, while it additionally requires
jJL cos θLj > jJRj for Eq. (9d). Near the EP phase tran-
sition, both NNN couplings are non-negligible, resulting in
the higher-order terms in Eqs. (9b) and (9c) that asso-
ciate with the two braiding degrees, respectively. We plot
in Fig. 3(d) two gray-shaded regions jJL cos θLj > jJRj ∪
jJL sin θLj > jJR sin θRj. Their complementary parameter
space is colored in white, near which non-negligible
expansion terms occur. The analysis above indicates that
the simultaneous presence of the NHSE on both ends of the
open chain and the localization tunability should appear
near the white region, as validated by the numerical
calculation in Fig. 3(b).
Next, we present a concrete experimental proposal to

realize non-Abelian gauge fields in non-Hermitian systems.
We use polarization-maintaining fibers to form a ring
resonator; its horizontal and vertical polarizations serve
as the pseudospin [47], and its whispering gallery modes
provide a synthetic frequency dimension [64,79]. From the
target Hamiltonian [Eq. (2)], Floquet analysis (Sec. S6
[74]) enables the derivation of the single round-trip transfer
matrix, comprising U(1) and SU(2) elements. The U(1)
elements manipulate the two polarizations uniformly, while
the SU(2) elements are constructed by spin rotation
matrices (U=U† or V=V†; can be realized with polariza-
tion rotators and phase retarders, see Sec. S6 in the
Supplemental Material for the explicit form [74]) and
the spin-dependent phase and amplitude modulation (along
the σz axis) sandwiched between them. Concretely, the
modulation signals for modulators 1–6 in Fig. 4(a) are
given by e−iTR½JL cosðθLÞþJR cosðθRÞ� cosðΩRtÞ, e−iTRα sinðΩRtÞ,
eiTRα sinðΩRtÞ, eTRα cosðΩRtÞ, e−TRα cosðΩRtÞ, and
eTR½−JL cosðθLÞþJR cosðθRÞ� sinðΩRtÞ, respectively, where ΩR is
the free spectral range, TR ¼ 2π=ΩR is the round-trip time,
and α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½JL sinðθLÞ�2 þ ½JR sinðθRÞ�2

p
are constants asso-

ciated with the modulation depths.
To extract the complex energy bands and their braiding,

an input-output measurement [24,80] can be performed on
the ring resonator. Continuous-wave laser light of arbitrary
input polarization [via the polarizer and synthesizer in
Fig. 4(a)] is injected into the ring resonator, with a tunable
detuning δω from a resonance frequency ωn. We can
measure the time (i.e., the quasimomentum k) and detun-
ing-dependent projection detection of the transmission
intensity in the linear basis [47], denoted as Ihðk; δωÞ
and Ivðk; δωÞ for horizontal and vertical polarizations
[Figs. 4(b) and 4(c)], respectively. The observables
Ihðk; δωÞ and Ivðk; δωÞ can be used to extract the
dispersion of both real and imaginary parts of the bands
[e.g., Fig. 1(c)], as well as the braiding topology in the
energy space [e.g., Figs. 1(e)–1(g)] via a fitting process (see
details of the fitting in Sec. S8 [74]).

(a) (b)

(c) (d)

FIG. 3. Tuning non-Hermitian localization with non-Abelian
gauge fields. (a)–(c) Population contrast η [Eq. (8)] in the ðθL; θRÞ
space when ðJL; JRÞ ¼ ð0.5; 0.5Þ (a), (0.55,0.5) (b), and (0.6,0.5)
(c), respectively. The black solid lines define the exceptional-
point phase boundary between the two braiding degrees ν ¼ �2
[see Fig. 1(d)]. (d) Analytical asymptotic analysis. Effective high-
order hoppings [Eqs. (9b) and (9c)] are non-negligible in the
vicinity of the white region, where the localization tunability
becomes most effective. In (d), we use ðJL; JRÞ ¼ ð0.55; 0.5Þ, the
same as those in (b).

PHYSICAL REVIEW LETTERS 132, 043804 (2024)

043804-4



Finally, we generalize our discussions to 2D non-
Hermitian lattices, where the gauge invariance of the
Wilson loop could break down in non-Abelian gauge
fields. The Wilson loop is a foundational quantity for
studying the behavior of gauge fields in lattice models [81].
It is defined as the trace of the loop operator, i.e., the path-
ordered product of link variables around a closed loop [45].
The loop operators of a given plaquette are nonunique (e.g.,
along the CW and CCW directions) but unitary trans-
formation partners in Hermitian systems, leading to the
gauge-invariant property of Wilson loops (see detailed
discussions and examples in Sec. S9 [74]).
To see how the gauge invariance of the Wilson loop gets

modified, we further generalize the 1D non-Abelian
Hatano-Nelson model to 2D,

Ĥ2D ¼
X
m;n

JUĉ
†
m;nþ1e

iθUσz ĉm;n þ JDĉ
†
m;neiθDσ0 ĉm;nþ1

þ JRĉ
†
mþ1;ne

iθRσx ĉm;n þ JLĉ
†
m;neiθLσy ĉmþ1;n: ð10Þ

This model features hopping phases θLσy, θRσx, θUσz,
and θDσ0 for left-, right-, up-, and downward, respectively.
We further assume that the hopping amplitudes are all equal
JL ¼ JR ¼ JU ¼ JD such that the non-Hermiticity solely

stems from the non-Abelian hopping phases. The Wilson
loops WNH

cw;ccw of the CW and CCW loop operators
[Fig. 5(a) bottom] are

WNH
cw;ccw ¼ 2eiθD ½cosðθUÞ cosðθLÞ cosðθRÞ

� sinðθUÞ sinðθLÞ sinðθRÞ�; ð11Þ
where þ is for CW, − is for CCW, and the superscript NH
stands for “non-Hermitian.” Evidently, the CW and CCW
Wilson loops now differ; this calls for further study of non-
Abelian magnetic fields in non-Hermitian systems, which
could lead to intriguing dynamics.
In conclusion, we introduce and study non-Abelian gauge

fields as an origin of non-Hermiticity. Non-Abelian gauge
fields enable non-Hermitian topological phase transition
and tunable NHSE despite the lack of gauge flux in one
dimension. The presence of the spinful freedom expands the
achievable range of braiding degrees under a given maximal
hopping order. In 2D non-Hermitian lattices, non-Abelian
gauge fields further disrupt the gauge invariance of the
Wilson loop. A concrete experimental scheme has been
proposed to realize the non-Abelian Hatano-Nelson model
in the synthetic frequency dimension of a polarization-
multiplexed ring resonator. The findings presented here
could offer unexplored avenues in non-Hermitian topology
via synthetic non-Abelian gauge fields.
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