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Non-Abelian gauge fields are versatile tools for synthesizing topological phenomena, but have so far
been mostly studied in Hermitian systems, where gauge flux has to be defined from a closed loop in order
for vector potentials, whether Abelian or non-Abelian, to become physically meaningful. We show that this
condition can be relaxed in non-Hermitian systems by proposing and studying a generalized Hatano-
Nelson model with imbalanced non-Abelian hopping. Despite lacking gauge flux in one dimension, non-
Abelian gauge fields create rich non-Hermitian topological consequences. With SU(2) gauge fields, the
braiding degrees that can be achieved are twice the highest hopping order of a lattice model, indicating the
utility of spinful freedom to attain high-order nontrivial braiding. At both ends of an open chain, non-
Abelian gauge fields lead to the simultaneous presence of non-Hermitian skin modes, whose population
can be effectively tuned near the exceptional points. Generalizing to two dimensions, the gauge invariance
of Wilson loops can also break down in non-Hermitian lattices dressed with non-Abelian gauge fields.
Toward realization, we present a concrete experimental proposal for non-Abelian gauge fields in non-
Hermitian systems via the synthetic frequency dimension of a polarization-multiplexed fiber ring resonator.
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Open physical systems coupled to external environments
are described by non-Hermitian Hamiltonians that support
complex eigenvalues. Compared to closed systems, non-
Hermitian systems exhibit rich unique phenomena, such as
power oscillations [1-3], unidirectional invisibility [3,4], and
exceptional-point (EP) encirclement [5,6], which have no
counterparts in Hermitian systems. In addition to their bulk
invariants defined from eigenvectors [7-10] as in Hermitian
systems, non-Hermitian systems also exhibit eigenvalue
topology [11-21] due to the expansion of eigenenergies from
the real to the complex regime. Importantly, non-Hermitian
eigenstates of a nonvanishing eigenvalue winding number are
all localized at the end of open systems, known as the non-
Hermitian skin effect (NHSE) [7,10,21,22]. The NHSE has
been implemented widely in photonics [18,23-26], acoustics
[27-29], mechanics [30-32], and electric circuits [33-38].
Moreover, synthetic gauge fields have been introduced for
better controlling non-Hermitian systems [39—44], but most
efforts have been dedicated to Abelian gauge fields.

Non-Abelian physics has recently attracted a lot of
attention in acoustics and photonics [45-66]. In particular,
non-Abelian gauge fields, leveraging the internal degrees of
freedom of particles, are a synthetic control knob for
realizing non-Abelian physics in engineered physical
systems [67]. These gauge fields enable synthetic spin-
orbit interaction and can be used for creating non-Abelian
Aharonov-Bohm interference and lattice models featuring
complex gauge structures. Moreover, recent experiments
have demonstrated the possibility of creating and tuning
building blocks of non-Abelian gauge fields in fibers [47]
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and circuits [68], indicating their applicability for large
lattice systems. The effectiveness of synthetic gauge fields
substantially relies on their dimensionality. In particular,
pure one-dimensional (1D) systems forbid the definition of
closed loops and the associated magnetic flux. Thus, synthe-
tic vector potentials, whether Abelian or non-Abelian, carry
little physical consequences in 1D Hermitian systems.
Although the 1D spin-orbit interaction realized with cold
atoms [69] seems to be a counterexample, an extra Zeeman
term has to be added for the Rashba-Dresselhaus gauge
fields to become nontrivial. So far, non-Abelian gauge fields
have seldom been explored in non-Hermitian systems, where
the dimensionality constraint above could be violated.

The Hatano-Nelson model [70] is a prototypical 1D
system that demonstrates the NHSE because of its nonre-
ciprocal hoppings. We first extend the model with U(1)
Abelian gauge fields as [Fig. 1(a)]

Hy = § JLeme e,y + Jrel e, (1)
m

Here &,(2,,) is the creation (annihilation) operator at site
m, Jy(r) is the real hopping amplitude leftward (rightward),
and 0 g) are the corresponding hopping phases. The con-
ventional Hatano-Nelson model is restored if ; = g = 0.
One can reformulate Eq. (1) as Hy(k)e 0+ = J eltk+0-) 4
Jre 0 where 0, = (6, +6g)/2 and 6_ = (0, —6R)/2.
As in Hermitian systems, a Peierls substitution of 8_ acts
on the momentum k. Meanwhile, on the left-hand side, a
Peierls substitution of 6, acts on the complex energy, i.e., a
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FIG. 1. Hatano-Nelson models with Abelian and non-Abelian
gauge fields. (a) Hatano-Nelson model with nonreciprocal U(1)
hopping phases and its single non-Hermitian band exhibiting a
winding number w = 1. (b) Hatano-Nelson model with nonre-
ciprocal SU(2) hopping phases. (c) Two non-Hermitian bands
(E, and E_) exhibiting four EPs at momenta {+x/4,+3x/4}
(vertical gray lines). (d) Phase diagram of the non-Abelian
Hatano-Nelson model under J; /Jg = 7/6, featuring Hopf links
with braid degrees v = +2. Their phase transition accompanies
the appearance of EPs (black solid lines). (e)—(g) Braiding of the
two bands under the EP phase transition (e), v = —2 (f), and
v = 2 (g) Hopf-link phases in the (ReE, ImE, k) space. Here we
use J; = 0.7, Jg = 0.6, and Oy = —1.38 throughout; 6; = +1
for (a), (c), and (e), 6, = +0.5 for (f), and 6 = +1.5 for (g),
respectively, as shown by black dots in (d).

rotation on the complex energy plane. Thus, the U(1) fields
only lead to trivial modifications to the Hatano-Nelson mo-
del. This is confirmed by the energy band shown in Fig. 1(a)
that exhibits a winding number w = +1 on the complex
energy plane, where w=(1/2x) [37d,arg[E(k)—Ey|dk=
sgn(Jp—Jr), E(k) is the periodic boundary condition
(PBC) spectrum, and =1 indicates counterclockwise
(CCW) and clockwise (CW) rotation, respectively, around
a complex energy base point E}, inside the PBC spectrum on
the complex plane [12].

In contrast, the model gets substantially modified with
SU(2) non-Abelian gauge fields [Fig. 1(b)],

H= § JLCme 0, TRe eRe, (2)
m

where 6, and o, are Pauli matrices. Notably, in Eq. (2), both
the hopping amplitudes (Ji,J/g) and the non-Abelian

hopping phases (6;,0g) contribute to non-Hermiticity.
This feature distinguishes our system from a recent study
on non-Hermitian Aubry-André-Harper models [71],
where the non-Abelian on-site potentials alone do not
cause non-Hermiticity. The Bloch Hamiltonian of Eq. (2) is

H(k) = A(k)oy + iJy sin 6 e o, + iJg sinOre™ 6,  (3)

where A(k) = Jy cos @ e + Jg cosOge™* and o is the
identity matrix. The eigenenergy of H is given by

EL(K) = A(K) £ iy/JEsin0 e + Fysinfpe.  (4)
Equation (4) permits EPs at kgp = {+x/4,+37/4} when
Jsin’0;, = Jgsin®0y (5)

the EP condition is satisfied, as shown by an example
spectrum in Fig. 1(c).

The two energy bands in Eq. (4) form the Hopf link in
(ReE, ImE, k) space (different from the exceptional-line
links in three-dimensional momentum space [72,73]). In
fact, the EP condition Eq. (5) is the phase transition of the
energy braiding between two types of Hopf links, defined
by a braid degree v = £2 [Fig. 1(d)], where

2 dk d o1,
= [T Sy et (A, —=Ted, ). 6
”/oznidkne<k2rk) (6)

This braiding degree describes how many times the two
bands braid in the E — k space as k varies from 0 to 2z [18].
Figures 1(e)—1(g) confirm this transition, where Hopf links
of opposite braiding degrees [Figs. 1(f) and 1(g)] appear on
opposite sides of the EP phase transition [Fig. 1(e)].
Therefore, even though no gauge flux can be defined in
a 1D bulk, introducing non-Abelian gauge fields can
sufficiently drive non-Hermitian topological phase transi-
tions, which is impossible for 1D Hermitian systems.

Non-Hermitian energy braiding of the Hopf-link type has
been identified previously, but requires longer range
hopping, such as the next-nearest-neighbor (NNN) coupling
[18,19]. To see why the nearest-neighbor (NN) non-Abelian
hopping here enables the Hopf braiding, consider a mo-
mentum-dependent gauge transformation U = diag(1, e'*).
The non-Abelian model H(k) [Eq. (3)] becomes H'(k) =
U'H(k)U,

/ o 0 —jelik
H'(k) = A(k)oy + 1J sin(6y) i 0

0 1
+ iJg sin(6g) <e‘2ik O)’ (7)

which maps the NN non-Abelian hopping to NN and NNN
Abelian hoppings. Specifically, the blocks (0,e*1%;1,0)

043804-2



PHYSICAL REVIEW LETTERS 132, 043804 (2024)

were shown to enable a nontrivial Hopf braiding v = £2 in
Ref. [19]. Thus, the competition of the last two terms of
Eq. (7) results in the dichotomy v = +2 of the phase
diagram, although the original H(k) only features NN
non-Abelian hopping. H'(k) also fosters the understanding
of the EP condition [Eq. (5)], under which a block in H' (k)
proportional to (0, 1 F ie?*;e=2* & 1,0) appears, which is
defective at k = +x/4 and k = £3x/4. More generally,
shown in Sec. S1 of the Supplemental Material [74], SU(2)
non-Abelian gauge fields on the hopping order of n can
realize a higher-order braid degree of 2n, which reduces
the hopping-order requirement for creating non-Hermitian
topology via spinful particles.

Next, we show how non-Abelian gauge fields enrich the
NHSE. Figure 2(a) shows the simultaneous presence of
left-localized, right-localized, and extended eigenstates
under the open boundary condition (OBC) of H, absent
in the Abelian Hatano-Nelson model H, featured by U(1)
gauge fields [see Eq. (1) and proof in Sec. S3.A [74]]. To
explain this, we calculate the eigenspectra of H under PBC
and OBC. The PBC spectra of H form closed loops
surrounding the zero energy in the complex plane, indicat-
ing point-gapped bulk topology, while their OBC spectra
become open arcs [15,77,78]. In particular, the PBC
spectrum simultaneously exhibits CW and CCW winding
at the four corners and center of the Hopf link, respectively.
Consequently, the OBC arc enclosed by these sectors
should demonstrate leftward [blue in Fig. 2(a)] and right-
ward [red in Fig. 2(a)] localization, respectively. Mean-
while, extended states [green in Fig. 2(a)] also appear at the
boundary of the CW and CCW winding [green circles in
Fig. 2(b)]. This simultaneous left- and rightward localiza-
tion cannot be explained solely by the imbalanced hopping
amplitudes (J;,Jg). The analysis above is further con-
firmed by the non-Bloch [7,14,17] [Fig. 2(c)] and winding-
number approaches [15], detailed in Secs. S3 and S4 of the
Supplemental Material [74].

We specifically discuss the properties of zero modes E =
0 (details in Sec. S3 [74]) under OBC. All of the associated
four non-Bloch solutions are z = =+i\/Jg/J.e™®, where
a = arctan(V'1 — F?/F) and F = cos(6g)cos(6;). All
roots of the characteristic polynomial have equal absolute
values, guaranteeing the existence of OBC zero modes, as
can be seen by the pinned crossing at E = 0 in the complex
plane [Fig. 2(b)]. We also prove that the OBC zero modes
must be doubly degenerate (Sec. S3 [74]). Furthermore,
The absolute values of the zero-mode non-Bloch solutions
depend only on the ratio of the hopping amplitudes, which
indicates that even SU(2) gauge fields cannot modify
the localization direction of the zero modes (proof in
Sec. S3 [74)).

Nevertheless, the localization of nonzero modes can
be effectively manipulated by non-Abelian gauge fields. To
further elucidate the interplay between the imbalanced
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FIG. 2. Analysis of non-Hermitian skin effect. (a) Eigenstates
under OBC of the non-Abelian Hatano-Nelson model. (b) Winding-
number analysis: periodic- (black lines) and open-boundary (dots)
spectra exhibit opposite winding depending on the choice of base
energy E,. Open-boundary eigenstates can be either extended
(green), left-localized (blue), or right-localized (red). The black
dot at the center denotes zero modes. (¢) Non-Bloch analysis: the
unit circle (red) intersects the generalized Brillouin zone (blue),
indicating the simultaneous presence of left- (inside the unit circle)
and right-localized (outside the unit circle) states. The black circles
denote the zero-mode solutions. Here, J; =0.7, Jg = 0.6,
O, ==2.5,0p =—14.

hopping amplitudes and non-Abelian gauge fields, we
define a population contrast # in the OBC eigenstates as

n(JL.Jr, 0L, O0r) = (n — ng)/(ny + ng +ng), (8)

where n;, ng, and ng are the number of left- and right-
localized and extended states, respectively. Figure 3 shows
the population contrast as a function of the gauge fields
(01, 0g) under different choices of (J,JR).

Figure 3(a) exhibits an equal partition of the left and right
localization under J; = Ji, where non-Abelian gauge
fields are the only origin of non-Hermiticity. # changes
sign across the 45° and 135° lines defined by sin?(6,) =
sin?(fg), exactly the EP phase transition condition.
Notably, when J;, = Jg, the PBC spectrum collapses into
an arc that overlaps with the OBC spectrum. Consequently,
the winding number of all OBC energy points is zero,
and all modes are extended. When 6 = {0, £z} or O =
{0, £x}, Eq. (4) reduces to the conventional Hatano-
Nelson energy band under J; = Jg, whose PBC spectrum
also collapses into an arc and all OBC modes are extended;
however, there is no phase transition there. In Figs. 3(b)
and 3(c), as the imbalance between J;, and Ji appears and
increases, localization tunability of the non-Abelian gauge
fields becomes suppressed, as shown by the reduced red-
colored area. Crucially, localization tuning is most effective
(indicated by color variations in Fig. 3) near the EP phase
transition [Eq. (5) and solid black lines in Fig. 3].

Asymptotic analysis (Sec. S5 [74]) reveals that the
appearance of such tunability stems from the competition
between the effective NNN hoppings [the last two terms in
Eq. (7)]. Without loss of generality, we assume Jy > Jy
and obtain asymptotic expressions (details in Sec. S5) of
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FIG. 3. Tuning non-Hermitian localization with non-Abelian
gauge fields. (a)-(c) Population contrast 77 [Eq. (8)] in the (6, )
space when (J, Jg) = (0.5,0.5) (a), (0.55,0.5) (b), and (0.6,0.5)
(c), respectively. The black solid lines define the exceptional-
point phase boundary between the two braiding degrees v = 42
[see Fig. 1(d)]. (d) Analytical asymptotic analysis. Effective high-
order hoppings [Eqgs. (9b) and (9c)] are non-negligible in the
vicinity of the white region, where the localization tunability
becomes most effective. In (d), we use (Ji, Jg) = (0.55,0.5), the
same as those in (b).

both eigen-energies E. (k)=
Jretelk + Jp cosOre™*, if |Jysinf | > |Jg sinbg,

(9a)

A(k) £iJy |sin€p

Jrsin6 |
ik C R R —idk ,
¢ Z [(JLsmGL ¢
if [Jysind |Z|Jrsinbg|, (9b)
Jysin6 n
—ik C L L idk ,
© Z KJRsmHR ¢

if [Jysin@y | S |Jrsinfg|, (9¢c)

A(k) £iJg|sinfg

Jp cos Oy e 4 Jpeti%re Ik if | sin@) | < |Jg sin 6],

(9d)

(=)' (2n)!
4"(n!)?(2n—1)
away from the EP phase transition [Egs. (9a) and (9d)], one
NNN hopping dominates over the other [Eq. (7)], and the
two eigenenergies are, respectively, governed by the
Abelian Hatano-Nelson model under different hopping

where C,, = and 6 /R = Or/rsgn(sindy jr). Far

amplitudes—jointly forming a Hopf link. Specifically, a
complete left localization is guaranteed for Eq. (9a) be-
cause |J. , while it additionally requires
|/ cos @ | > |Jg| for Eq. (9d). Near the EP phase tran-
sition, both NNN couplings are non-negligible, resulting in
the higher-order terms in Egs. (9b) and (9c) that asso-
ciate with the two braiding degrees, respectively. We plot
in Fig. 3(d) two gray-shaded regions |/ cos@y| > |Jg| U
|Jysin @ | > |Jg sin@g|. Their complementary parameter
space is colored in white, near which non-negligible
expansion terms occur. The analysis above indicates that
the simultaneous presence of the NHSE on both ends of the
open chain and the localization tunability should appear
near the white region, as validated by the numerical
calculation in Fig. 3(b).

Next, we present a concrete experimental proposal to
realize non-Abelian gauge fields in non-Hermitian systems.
We use polarization-maintaining fibers to form a ring
resonator; its horizontal and vertical polarizations serve
as the pseudospin [47], and its whispering gallery modes
provide a synthetic frequency dimension [64,79]. From the
target Hamiltonian [Eq. (2)], Floquet analysis (Sec. S6
[74]) enables the derivation of the single round-trip transfer
matrix, comprising U(1) and SU(2) elements. The U(1)
elements manipulate the two polarizations uniformly, while
the SU(2) elements are constructed by spin rotation
matrices (U/U" or V/VT; can be realized with polariza-
tion rotators and phase retarders, see Sec. S6 in the
Supplemental Material for the explicit form [74]) and
the spin-dependent phase and amplitude modulation (along
the o, axis) sandwiched between them. Concretely, the
modulation signals for modulators 1-6 in Fig. 4(a) are
given by e—iTR[JLcos(GL)+JRcos(QR)]cos(QRt)’ e—iTRasin(QRt)’
eilra sin(QRt)’ e—TRacos(QRt)’ and

elra cos(Qgt) ,

el rl=/Lcos(OL) /g cos(@r)Isin(@?) - respectively, where Qp is

the free spectral range, Tr = 27/Qy is the round-trip time,
and @ = \/[Jy_sin(@))]? + [Jg sin(6g )]? are constants asso-
ciated with the modulation depths.

To extract the complex energy bands and their braiding,
an input-output measurement [24,80] can be performed on
the ring resonator. Continuous-wave laser light of arbitrary
input polarization [via the polarizer and synthesizer in
Fig. 4(a)] is injected into the ring resonator, with a tunable
detuning dw from a resonance frequency w,. We can
measure the time (i.e., the quasimomentum k) and detun-
ing-dependent projection detection of the transmission
intensity in the linear basis [47], denoted as Iy (k,dw)
and [,(k,6w) for horizontal and vertical polarizations
[Figs. 4(b) and 4(c)], respectively. The observables
I(k,6w) and I,(k,5w) can be used to extract the
dispersion of both real and imaginary parts of the bands
[e.g., Fig. 1(c)], as well as the braiding topology in the
energy space [e.g., Figs. 1(e)—1(g)] via a fitting process (see
details of the fitting in Sec. S8 [74]).
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FIG. 4. Experimental proposal for non-Abelian gauge fields in
non-Hermitian systems via the synthetic frequency dimension of
a polarization-multiplexed fiber ring resonator. (a) Setup sche-
matic. Optical elements are driven with appropriate modulation
signals (detailed in the main text) to jointly realize a total of four
functionalities, i.e., a U(1) phase modulation (PM), U(1) ampli-
tude modulation (AM), SU(2) PM, and SU(2) AM, which jointly
realize the non-Abelian Hatano-Nelson model. PBS/C, polariza-
tion beam splitter-combiner; PD, photodetector. (b),(c) Projection
detection of the transmission spectra of horizontal and vertical
polarizations, which can be used for extracting the complex
energy to measure the Hopf braiding topology (see Supplemental
Material Secs. S7 and S8 [74]). Here we use J;, = 0.7, Jp = 0.3,
0, =2 rad, 05 = —1 rad with |y;,) = (1,0)7.

Finally, we generalize our discussions to 2D non-
Hermitian lattices, where the gauge invariance of the
Wilson loop could break down in non-Abelian gauge
fields. The Wilson loop is a foundational quantity for
studying the behavior of gauge fields in lattice models [81].
It is defined as the trace of the loop operator, i.e., the path-
ordered product of link variables around a closed loop [45].
The loop operators of a given plaquette are nonunique (e.g.,
along the CW and CCW directions) but unitary trans-
formation partners in Hermitian systems, leading to the
gauge-invariant property of Wilson loops (see detailed
discussions and examples in Sec. S9 [74]).

To see how the gauge invariance of the Wilson loop gets
modified, we further generalize the 1D non-Abelian
Hatano-Nelson model to 2D,

HZD = ZJUC

AT g0y
+ JRcm+1,ne K Cn

e Ovo¢ +JDc gifooog, bl

+JLC e 0.0 "C m+1n- (10)

This model features hopping phases 0 o,, Ogo,, Oyo_,
and 0o, for left-, right-, up-, and downward respectively.
We further assume that the hopping amplitudes are all equal
Ji, = Jgr = Jy = Jp such that the non-Hermiticity solely

(a)

B
8

o8
5
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2

D0
w caw|
-1 -0.5 0 0.5 1-1 -0.5 0 0.5

FIG. 5. Distinct Wilson loops for the same plaquette in a non-
Hermitian non-Abelian lattice model. (a) A 2D square-lattice
model featuring hopping phases 0, 6,, Ogo,, Oyo., and Opo, for
left-, right-, up-, and downward, respectively. Loop operators
along the CW and CCW directions can be defined. The red point
indicates the starting point of the Wilson loop. (b),(c) Distinct
CW and CCW Wilson loop for a single plaquette in the (6, , )
parameter space. Here we fix 0y =2, 0p = 0.

stems from the non-Abelian hopping phases. The Wilson
loops WM., of the CW and CCW loop operators
[Fig. 5(a) bottom] are

WAl = 26%[cos(8y) cos(0y) cos(g)
+ sin(@y) sin(6y) sin(6R)], (11)

where + is for CW, — is for CCW, and the superscript NH
stands for “non-Hermitian.” Evidently, the CW and CCW
Wilson loops now differ; this calls for further study of non-
Abelian magnetic fields in non-Hermitian systems, which
could lead to intriguing dynamics.

In conclusion, we introduce and study non-Abelian gauge
fields as an origin of non-Hermiticity. Non-Abelian gauge
fields enable non-Hermitian topological phase transition
and tunable NHSE despite the lack of gauge flux in one
dimension. The presence of the spinful freedom expands the
achievable range of braiding degrees under a given maximal
hopping order. In 2D non-Hermitian lattices, non-Abelian
gauge fields further disrupt the gauge invariance of the
Wilson loop. A concrete experimental scheme has been
proposed to realize the non-Abelian Hatano-Nelson model
in the synthetic frequency dimension of a polarization-
multiplexed ring resonator. The findings presented here
could offer unexplored avenues in non-Hermitian topology
via synthetic non-Abelian gauge fields.
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