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We suggest the use of broadband frequency modulation to construct a novel type of optical
interferometer. This interferometer is insensitive to optical phase and allows measurement of the group
velocity and group velocity dispersion without the need for short pulse apparatus.
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This Letter describes a novel optical interferometer that
is insensitive to optical phase and allows measurement of
the group velocity and group velocity dispersion without
the need for short pulse apparatus. As shown in Fig. 1 the
interferometer consists of a phase modulator, the sample to
be studied, and a second modulator. In prototype operation a
single optical frequency is incident on the first modulator
that produces a broad phase modulated spectral comb. This
comb is incident on the sample and then onto the second
modulating crystal. This second modulator is run in anti-
phase with the first so that without a sample the frequency
comb is recompressed back to the initial single frequency.
With the length known, the normalized power of the single
frequency output is measured as a function of the relative
phase of the input and output driving waveforms and yields
the group velocity of the sample. No short pulse apparatus is
required to predict short pulse behavior. This interferometer
is motivated by both the recent advances in the use of thin
film LiNbO3 [1,2], as well as conceptual advances in the
area of synthetic dimensions. Following Buddhiraju et al.
[3], one dimension is the array of phase modulators. The
second, or synthetic, dimension, is the set of frequencies that
are applied to the modulating crystals [4]. This Letter will
show, for the ideal case, that with L, Vg, and T ¼ L=Vg as
the length, group velocity, and transit time through the
sample, and with a peak phase retardation of each modulator
of δ, and also assuming that there are Q1 submodulators in
the primary dimension, and Q2 properly phased frequencies
in the synthetic dimension, that the fractional accuracy of the
interferometer is T=ΔT ¼ L=ΔL ¼ Vg=jΔVgj ≈ πQ1Q2δ.
Here, measurement of ΔT is primary and measurement of L
or Vg requires that the other quantity is known.
As to other techniques that accomplish similar objectives,

white light Michelson interferometry where identical path
lengths allow the observation of fringes is well developed
and followed [5]. There is also considerable success with
intensity based fiber optic sensors [6] and single mode fiber
systems [7].

In the following we follow Zhang et al. [8], Raymer [9],
and Harris and Buscaino [10] and make use of harmonic
balance and a Dirac input-output formalism. The in-
put and output optical envelopes are periodic and are
described by kets jai and jbi whose coefficients are the
terms of the Fourier series describing the envelope wave-
forms aðtÞ and bðtÞ. The coefficients of an ¼ hnjai and
bn ¼ hnjbi extend from −Nm to þNm so that, for exam-
ple, bðtÞ ¼ PNm

n¼−Nm
bn exp½inωmt�.

We allow both the input and output phase modulators of
Fig. 1 to be driven by multiple frequencies ωm and
harmonics of ωm with the constraint that each harmonic
component at the input modulator is balanced by an
antiphased component at the output modulator. The modu-
lating crystals are assumed to be sufficiently thin that the
applied multifrequency electric field (shown for three
frequencies) causes an instantaneous variation of phase of

ϕðtÞ ¼ δ1 cosðωmtþ ϕ1Þ þ δ2 cosð2ωmtþ ϕ2Þ
þ δ3 cosð3ωmtþ ϕ3Þ: ð1Þ

In the time domain the input and output envelopes
are related by bðtÞ ¼ exp½iϕðtÞ�aðtÞ. We move to the
frequency domain by harmonically balancing and using
expfiδ½cosðωmtþϕÞ�g¼Pþ∞

q¼−∞ iqJqðδÞexp½iqðωmtþϕÞ�.
The input and output fields are then related by jbi ¼
Mjai where the matrix elements of the multifrequency
modulator are

FIG. 1. Monochromatic light jai is incident onto a phase
modulator, the sample, and a second phase modulator driven
180° out of phase with the first. An output filter passes the
incident monochromatic frequency.
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Mnr ¼ hnjMjri
¼

X
h

X
p

iðqþhþpÞJqðδ1ÞJhðδ2ÞJpðδ3Þ

× exp½iðqϕ1 þ hϕ2 þ pϕ3Þ�; ð2Þ

where q ¼ n − 2h − 3p − r and the sums on h and p are
over −Nm to þNm. Equations (1) and (2) may be extended
to include additional driving harmonics. The matrices of
Eq. (2), in the limit of sufficiently large Nm, are unitary and
commute with each other. For a sinusoidal drive at only
qωm, Mnr reduces to

Mnr ¼ iðn−rÞ=qJðn−rÞ=qðδqÞ exp½iðn − rÞ=qϕq�; ð3Þ

with the constraint that nonzero elements require the
quantity ðn − rÞ=q to be an integer. The matrix with
elements of Eq. (2) may be factored into single frequency
submatrices, or instead, may be constructed by multiplica-
tion of the appropriate submatrices. To obtain the matrix
elements of the antiphased modulator of Fig. 1, the phases
ϕ1, ϕ2, and ϕ3 are replaced by ϕ1 þ π;ϕ2;þπ, and ϕ3 þ π.
Figure 2 shows the power spectrum of the input and

output modulators in the absence of a sample. In each case
the phase retardation of the modulators is δ ¼ 1.5 rad and
the number of retained sidebands is 2Nm þ 1 where for this
figure Nm ¼ 20. As noted, depending on the relative phase
of the input and output modulators the spectrum width will
approximately double, or in antiphase, collapse to a single
frequency.
The matrix for envelope propagation in the sample is

diagonal and is readily obtained from the slowly varying
envelope equation. Starting with

∂bðz; tÞ
∂z

þ
�
∂k
∂ω

�
∂bðz; tÞ

∂t
−
i
2

�
∂
2k

∂ω2

�
∂
2bðz; tÞ
∂t2

þ αbðz; tÞ ¼ 0; ð4Þ

we expand in the frequency components bnðzÞ, i.e.,
bðz; tÞ ¼ P

n bnðzÞ expðinωmtÞ, and solve for these com-
ponents as a function of z to obtain

bnðLÞ=bnð0Þ¼expð−αLÞexp
�
−i
�
nωmL
Vg

þn2ω2
mβ

00L=2
��

;

ð5Þ

with L as the sample length, α as the loss coefficient,
and with a sample group velocity of 1=Vg ¼ ∂k=∂ω and
dispersive coefficient β00 ¼ ∂

2k=∂ω2 ¼ −1=V2
gðdVg=dωÞ.

The diagonal matrix that relates the output of the sample to
the input has elements

MðpropÞ
nr ¼ exp

�
−i
�
nLωm

Vg
þ n2ω2

mβ
00L

2

��
δnr: ð6Þ

The normalization of b0ðLÞ is to b0 expð−αLÞ, i.e., to the
field value at the output of the system with the modulator
drives turned off.
The basic interferometer of Fig. 1 consists of a phase

modulator, the sample, and a second phase modulator. In
the absence of a sample, the monochromatic input beam is
expanded by the input modulator and collapsed by the
output modulator so as to remain unchanged. With a
sample present the input and output fields are related by
jbi ¼ MðoutÞMðpropÞMðinÞjai and the monochromatic optical
field following the output filter is

h0jbi ¼ h0jMðoutÞMðpropÞMðinÞj0i
¼

X
h

X
k

h0jMðoutÞjhihhjMðpropÞjkihkjMðinÞj0i: ð7Þ

Though we will return to Eq. (7) for numerical work, first,
in order to obtain an analytic expression, we assume a
single frequency input ωm with the same modulation depth
δ at both the input and output modulators, and also
temporarily neglect group velocity dispersion (β00 ¼ 0).
For a single frequency drive at ωm, the pertinent matrix
elements are

hkjMðinÞj0i ¼ ikJkðδinÞ expðikϕinÞ
hhjMðpropÞjki ¼ expð−iθhÞδkh
h0jMðoutÞjhi ¼ i−hJ−hðδoutÞ expð−ihϕoutÞ; ð8Þ

where θh ¼ ðhLωm=VgÞ þ ðh2ω2
mβ

00L=2Þ. We set the
relative phase of the input and output modulators to
ϕout ¼ ϕin þ π þ δϕ, where δϕ is the tunable variable.
With δin ¼ δout ¼ δ the output field is

FIG. 2. Modulator power spectrum at a phase retardation of
δ ¼ 1.5 rad for each modulator. (a) Input modulator driven at
ωm. (b) Input modulator driven at ωm, 2ωm, and 3ωm, all with the
same phase and no output modulator. (c) Input and output
modulators each driven at ωm, 2ωm, and 3ωm all with the same
phase. (d) Input and output modulators each driven with three
frequencies all 180° out of phase from those at the input
modulator.
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b0ðLÞ¼
XNm

h¼−Nm

JhðδÞJ−hðδÞexp
�
ih

�
δϕ−

ωmL
Vg

þπ

��
: ð9Þ

From Eq. (9), using Graf’s sum rule the output optical
field is

b0ðLÞ ¼ J0ðZÞ ¼ J0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δ2ð1 − cosðψÞ

q �

ψ ¼ δϕ −
ωmL
Vg

; ð10Þ

where jb0ðLÞj2 is the normalized (monochromatic) power
transmitted through the output filter.
With the length of the sample known, Eq. (10) is used

to measure the group velocity. By first removing the
sample, δϕ is varied to generate the blue curve of Fig. 3(a).
The sample is then inserted to generate the red curve, which,
here, is shifted to the right from the blue curve by
δϕ ¼ 2.83 rad. With L ¼ 3 cm and ωm ¼ ð2πÞð3 × 109Þ,
from Eq. (10), the group velocity is Vg ¼ ðωmL=δϕÞ ¼
c=1.5. Here, Nm ¼ 50.
The attainable accuracy for group velocity measurement

is dependent on the width of the curves of Fig. 3(a).
Figure 3(b) shows an enlargement of the blue curve.
For Z, [Eq. (10)], small enough so that J0ðZÞ may be
approximated by 1 − Z2=2 the full width at half power of
each of the curves of Fig. 3 is 2=δ rad. Noting the
repetitions of jb0�j2 at intervals of 2π, the number of
resolvable data points without repetition is πδ. To
avoid repetitions the maximum sample length should be
less than Lmax ¼ 2πVg=ωm m, which for this example is
Lmax ¼ 6.7 cm. Equivalently, the maximum delay time

that is free of repetitions is Tmax ¼ 2π=ωm. Note that the
number of resolvable data points in this range πδ is
independent of ωm.
With the group velocity determined it is often convenient

to set the phase difference of the input and output
modulating fields to δϕ ¼ π þ ωmL=Vg. The red curve
of Fig. 3(a) will then center at the origin, with group delay
no longer playing a role. This choice of relative modulator
phase is equivalent to transforming Eq. (4) to local
time τ ¼ t − L=Vg.
When working in the time domain, the measurement

of group velocity requires that the sample length be
sufficiently short that group velocity dispersion plays a
negligible role. Conversely the measurement of group-
velocity dispersion (GVD) requires that the sample is
sufficiently long that GVD dominates. For a Gaussian
pulse with a width τ, the temporal near-field length is
Lnf ¼ τ2=ð4lnð2Þβ00Þ. For typical fiber parameters and a
1 ps-long pulse, the near-field temporal length in the red
region of the spectrum is about 14 m. Working in the
frequency domain we replace τ with the inverse band-
width of the frequency modulated signal π=ðωmδÞ and
test the resulting definition Lnf ¼ ½π2=4 lnð2Þ�ð1=ω2

mβ
00δ2Þ.

Returning to Eqs. (2) and (7), Fig. 4 shows a plot of the
output power jb0j2 versus relative modulator phase for four
different values of the ratio L=Lnf . When the sample is
short as compared to Lnf we obtain a similar curve as in
Fig. 3(b). When the sample length equals and exceeds Lnf
the normalized power at zero relative phase declines toward
zero, and this variance may be used to measure β00. [If a
tunable monochromatic laser source is available the group
velocity may also be measured by the more straight forward
method of Fig. (3).]
To increase the fractional resolution of the interferom-

eter we follow Lončar, Fan, and Hu and use what is
termed “synthetic variables” [1–4]. For both the input and
output modulators there are two dimensions: the primary
dimension that delineates the set of submodulators, and

FIG. 3. (a) Interferometer output power versus relative phase
δϕ between the input and output modulators. The blue curve
of part (a) shows the single frequency output power in the absence
of a sample. The red curve is with the sample present
and is shifted to the right from the blue curve by 2.8 rad. Part
(b) shows an enlargement of the blue curve of part (a). In each
case the full width at half power of these curves is 2=δ rad, where,
here, δ ¼ 10.

FIG. 4. Interferometer response in the temporal near
and far fields. (a) L ¼ Lnf=4, (b) L ¼ Lnf , (c) L ¼ 2Lnf ,
(d) L ¼ 3Lnf , where Lnf ¼ 7.2 m and other parameters are
ωm ¼ ð2πÞ × 10 GHz, δ ¼ 50,Nm ¼ 100, and β00 ¼ 50 ps2=km.
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the synthetic dimension that delineates the set of phased
harmonic frequencies that are simultaneously applied to
each submodulator. We choose the phases of the three
applied harmonics at frequencies ðωm; 2ωm; 3ωmÞ to be
ðϕm; 2ϕm; 3ϕmÞ so that the applied waveform is a
periodic pulselike three term Fourier series. Relative
phase, in all figures and text, is the phase difference
between the input and output modulators, as measured at
the fundamental frequency. Results are numerical and are
based on Eqs. (1), (2), (6), and (7).
We observe some properties of the matrices of Eq. (2).

(1) In the primary dimension if each of three component
modulators has a peak phase δ, the total modulator will have
an argument of 3δ. It is an engineering choice as to whether
to make a higher voltage modulator, or instead, use a
sequence of three lower voltage modulators. (2) By applying
the sum of phased modulation frequencies (synthetic
dimension) we decrease the repetition frequency of power
peaks versus relative phase. This is a consequence of a
phased (three term) Fourier series with terms of equal
amplitude. Such a waveform has a resolution determined
by its highest frequency component and a repetition fre-
quency determined by its lowest frequency component.
These properties are demonstrated in Fig. 5. Part (a) shows
the effect of cascading three primary modulators all driven at
the same frequency ωm. Part (b) contrasts a single modulator
running at the third harmonic alone (green), with a single
modulator driven by three harmonics (red).
Figure 6 shows the interplay of the two dimensions

with three modulators in a row, each with three frequen-
cies applied. The resolution, red compared to blue,
is now increased by a factor of 9. This figure uses
Eqs. (2) and (7), including GVD, with parameters δ ¼ 1.0,
L ¼ 2.66 cm, ωm ¼ ð2πÞð3 × 109Þ, Vg ¼ c=1.5, Lmax ¼
0.066 m, β00 ¼ 25 ps2=km, and Nm ¼ 18.
The Supplemental Material [11] describes a time domain

treatment that is complimentary to the frequency domain
treatment of the primary text. With GVD neglected, the

time domain approach is intuitive and concise. It is shown,
as a special case, how using only the fundamental and the
tenth harmonic, that the essential features of measurement
of ΔT at an accuracy of the inverse bandwidth of the
highest harmonic, together with a repetition frequency of
the fundamental is retained.

The author thanks Shanhui Fan, Moti Segev, Joseph
Kahn, and Brandon Buscaino for inspiring discussions.
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