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We have used quantum control to suppress the impact of random atom positions on coherent population
transfer within atom pairs, enabling the observation of dipole-dipole driven Rabi oscillations in a Rydberg
gas with hundreds of atoms. The method exploits the reduced coupling-strength sensitivity of the off-
resonant Rabi frequency, and coherently amplifies the achievable population transfer in analogy to quasi-
phase-matching in nonlinear optics. Simulations reproduce the experimental results and demonstrate the
potential benefits of the technique to other many-body quantum control applications.
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The ability to create and manipulate superposition states
possessing well-defined relative amplitudes and phases is a
key capability for controlling quantum systems. Typically,
(near) resonant interactions play an essential role, enabling
the transfer of probability amplitude between states to
establish an initial coherence or entanglement, manipulate
it, and/or measure it in a desired quantum operation. The
application of a coherent coupling over a specific period of
time creates a superposition in which the relative amplitude
and phase of the constituent states is fully determined by
the interaction strength and detuning from resonance. Thus,
in an ensemble of nominally identical elements for which
the interaction strength or detuning is nonuniform, the
characteristics of the quantum state created (or modified)
through the interaction will vary among the constituents.
Alternatively, if the quantum state of interest involves
multiple elements of the ensemble, such inhomogeneities
can significantly impact the evolution of entanglement and
the nature of the quantum state [1–6].
We have developed a control scheme that can substan-

tially reduce the impact of inhomogeneities on quantum
ensembles driven by (near) resonant interactions. The
method is applicable when, for all elements, the relevant
resonance occurs at the same value of some externally
tunable parameter, but where the coupling strength varies.
Common examples of this scenario include optical exci-
tation of a spatially extended sample using a laser beam
with a nonuniform spatial intensity distribution [7–9], or
Förster-resonant interactions [10–12] between nonuni-
formly spaced Rydberg atoms in a frozen gas [13–19].
We focus on the latter.
Specifically, we have used coherent control of near-

resonant dipole-dipole (DD) interactions in a cold, random
many-atom Rydberg gas to actively suppress dephasing
associated with the variation in the coupling strength
between neighboring atoms. To implement the control,
pulsed electric field sequences rapidly tune the eigenstates
of Rb Rydberg atom pairs back and forth across a Förster

resonance, holding the atoms in opposing wings of
the resonance for equal times, substantially reducing the
variation in the generalized Rabi frequency over the
ensemble. The sequence results in a periodic reversal of
the sign of the Rabi phase lag accrued in adjacent time
intervals, amplifying the coherent population transfer in a
time-domain analogy to spatial quasiphase matching
schemes in nonlinear materials [20], and enabling what
is to our knowledge the first observation ofDD-driven Rabi
oscillations in a random Rydberg gas with more than a few
atoms [12]. The mechanism underlying the control can be
understood using an analytic two atom model, but numeri-
cal simulations that include beyond nearest-neighbor inter-
actions are required to obtain quantitative agreement with
the experiments. Simulations also demonstrate the effec-
tiveness of the technique for suppressing variations in the
Rabi phase and, accordingly, in the quantum state distri-
bution in spatially ordered Rydberg arrays with small
residual differences in atom separation, such as those
being employed for quantum simulation and computing
applications [21–23].
In the experiments, a random ensemble of ∼1000

32p3=2, jmjj ¼ 3=2 85Rb Rydberg atoms is excited from
a 70 μK magneto-optical trap using a 300 ns laser pulse
[24]. Voltages applied to a pair of parallel plates straddling
the magneto-optical trap facilitate the creation of an initial
static, F ≃ 12 V=cm, and subsequent pulsed, electric fields
within the excitation volume. Following the Rydberg
excitation, electric field steps with fast (∼2 ns) rise and
fall times rapidly Stark tune the Rydberg atoms on, or
about, the 32p3=2, jmjj ¼ 3=2þ 32p3=2, jmjj ¼ 3=2 ↔
32sþ 33s (i.e., pp ↔ ss0) Förster resonance near F0 ¼
11.5 V=cm [16]. Time spent in the vicinity of the resonance
enables coherent population transfer between pp and ss0
atom pairs via an anisotropic DD interaction VðR;ΘÞ ¼
rpsrps0fðΘÞ=R3, where rps (rps0 ) are radial matrix elements
between 32p and 32s (33s), R is the separation between the
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atoms in each pair, and fðΘÞ describes the anisotropy [40]
in terms of the angle Θ between the internuclear and
electric field axes [24]. After the atoms have interacted for
the desired time, state-selective field ionization is used
to measure the final population in different Rydberg
states [41].
Figure 1 shows thepp to ss0 population transfer probability

(i.e., the ss0 population normalized to the total Rydberg
population) as a function of the tuning field, for a 500 ns
interaction time andRydberg density ρ ¼ 2 × 109 cm−3. The
agreement between the simulated ensemble and measured
line shapes is reasonable. The simulation and experiment
differ more in the line shape wings, where the transition
probability is dominated by atompairswith separationsmuch
less than average [19]. While the agreement there can be
improved somewhat by modeling the effect of Rydberg
blockade [42], which suppresses the excitation of the closest
atom pairs, our principal measurements focus on interactions
closer to resonance where blockade effects have negligible
effect [24]. The half-width at half-maximum energy width of
the ensemble cusp and 50% Lorentzian line shapes are
identical, E0 ¼ 2V0 (≃3 MHz for ρ ¼ 1 × 109 cm3), where
V0 is the angle averaged interaction strength at the most
probable pair separation for a given density, R0 ≃ ð2πρÞ−1=3.

The inset to Fig. 1 shows the predicted evolution of the
ss0 population when the atoms are tuned to the Förster
resonance and allowed to interact for 500 ns. The curves
corresponding to isolated atom pairs exhibit clear Rabi
oscillations with frequencies γðR;ΘÞ ¼ 2VðR;ΘÞ [12,43].
Because of the variation in γðR;ΘÞ, the predicted evolu-
tion for the ensemble exhibits a monotonic increase and
saturation, but no observable Rabi oscillations. Measure-
ments of the remaining pp population in an experimental
ensemble show a corresponding monotonic decrease (black
dots in Figs. 2 and 3).
The situation is similar when the atom pairs are detuned

from resonance by an energy E. The oscillations in the
transition probability for individual atom pairs, at gener-
alized Rabi frequencies ΓðR;ΘÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 þ 4V2
p

[43], are
again obscured in the ensemble average, leading to an
initial increase (decrease) and then saturation of the ss0
(pp) population (magenta dots in Figs. 2 and 3). The
primary differences from the on-resonant case being a

FIG. 1. Dipole-dipole driven population transfer probability vs
applied electric field (lower axis) and bare-state energy splitting
(upper axis). Black dots: experimental result for a 500 ns
interaction time and ρ ¼ 2 × 109 cm−3. Solid orange: simulated
cusp line shape for the ensemble [19], including nearest-neighbor
Rydberg interactions only [24]. Thin black lines: predicted
Lorentzian line shapes for atom pairs with DD couplings
corresponding to 20% (dashed), 50% (solid), and 80% (dot-
dashed) levels in the ensemble integrated coupling-strength
probability distribution. The vertical dotted lines mark the �
detuning points for a typical control sequence. Inset: simulated
population transfer vs interaction time with the system tuned to
resonance for 500 ns, and line types corresponding to those in the
main figure.

FIG. 2. Experimental results (dots), along with 2-atom [dashed
lines, Fig. 2(a) only] and 4-atom (solid lines) simulations, for p
state population (normalized to total population) as a function of
delay T after an ensemble of initially excited p atoms with peak
Rydberg density (a) 1 × 109=cm3 and (b) 2 × 109=cm3 is tuned
on-resonance (black) orþ15 MHz (magenta) on the positive field
side of resonance for t > 0, or subjected to QPM sequences with
a total of N ¼ 2 (blue) or N ¼ 4 (orange) time zones with
alternating detunings of �15 MHz. In (a) and (b), E=E0 ≃ 5 and
2.5, respectively. There are no adjustable parameters in the
simulations. All data in each graph have been scaled using a
single normalization constant.
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decrease in the maximum ensemble-averaged transition
probability, h4V2=Γ2i, and a more rapid saturation due to
the increase in Γ.
In the remainder of this Letter we use the visibility of

Rabi oscillations as a metric for the effectiveness of control
sequences for suppressing the impact of inhomogeneities in
the coupling strength on coherent state preparation across
the ensemble. Our principal goal is to reduce the variation
Δϕ in the Rabi phase, ϕ ¼ ΓT, acquired by different atom
pairs interacting for the same time T, enabling the creation
of (more) uniform distributions of arbitrary quantum
superpositions of pp and ss0 pair states.
Since the variation ΔV in the interaction strength within

the random ensemble is comparable to V0, the half-width
E0 of the ensemble-averaged population transfer cusp line
shape provides a reasonable measure of ΔV. On resonance,
the phase variation Δϕ ¼ E0T is a maximum, resulting in
the greatest dephasing for a given interaction time T.
However, if all atom pairs have the same large detuning
jEj ≫ E0, then Δϕ ≈ TE0

2=ð2EÞ, and there is negligible
dephasing for times T ≪ 2E=E0

2. Of course, with large
detunings, the maximum ensemble-averaged transition
probability, h4V2

0=Γ2i ∼ E0
2=E2, is also negligibly small.

Therefore, interactions at large detuning alone are not an
option for creating ensembles of atoms in identical arbitrary
quantum superposition states.
Off resonance, the transition amplitude is limited by the

relative phase mismatch between the coupled states, which
advances at a rate E. A similar effect caps optical harmonic
conversion in nonlinear crystals where harmonic and
fundamental waves travel with different indices of refrac-
tion. In that case, quasi-phase-matching (QPM) via periodic
poling [20], characterized by a reversal of the sign of the
nonlinear susceptibility at regular intervals within the
crystal, can dramatically increase the conversion efficiency.
We demonstrate an analogous approach, periodically flip-
ping the sign of E to implement a time-domain variant of
QPM in a driven quantum system. This enables large
transition amplitudes at any detuning.
Figures 2 and 3 show the evolution of the pp character

when QPM sequences are applied to a DD-driven

many-atom Rydberg gas. During the sequence, the initial
32p ensemble is subjected to periodic electric field steps or
“jumps” that rapidly (∼2 ns) tune the atom pairs back and
forth across the resonance, reversing the sign of E. The
atoms interact with alternating detunings �E in N adjacent
time “zones,” each with a duration T=N, for a total time
T [44].
Several features of the data in Figs. 2 and 3 illustrate the

effectiveness of the control sequences for reducing dephas-
ing within the ensemble while allowing for large proba-
bility amplitude transfers. First, the level of off-resonant
coherent population transfer is substantially enhanced
through QPM, increasing with N so that large detunings
can be used to reduce dephasing without limiting the range
of constituent state amplitudes that can be realized. Second,
Rabi oscillations that are completely obscured in the on-
resonant (black) and constant detuning (magenta) data are
revealed through QPM. To our knowledge this is the first
observation of DD-driven Rabi oscillations in a random
ensemble with more than a few atoms. As expected for
large detunings, the period of the damped Rabi oscillations
is largely independent of density (Fig. 2) and inversely
proportional to Γ ≃ E (Fig. 3). Interestingly, the oscillation
period and damping time increase in proportion to the
number of QPM zones.
The principal characteristics of the data in Figs. 2 and 3

are captured by numerical simulations [24,45]. The calcu-
lations follow the quantum evolution of 5000 individual
groups of two (dashed lines) or four (solid lines) nearest-
neighbor 32p atoms that are selected from within a random
ensemble at the measured densities. The atoms in each
group are allowed to interact for a total time T and the
probabilities for finding atoms in the initial 32p state are
summed over the individual groups. All atom pairs are
subject to the (near) resonant pp ↔ ss0 Förster interaction
for the constant or periodically reversing detuning. Pairs of
atoms within the four atom groups are also subject to field-
independent DD-exchange interactions, ps ↔ sp and
ps0 ↔ s0p [24], which are partially suppressed by the
resonant interactions between nearest neighbors [15,17,45].
While ignoring exchange provides qualitative agreement

FIG. 3. Analogous to Fig. 2 except that the Rydberg density is fixed at 3 × 109=cm3 (E0 ≃ 9 MHz) with detuning magnitudes of
(a) E ¼ 10 MHz, (b) E ¼ 15 MHz, and (c) E ¼ 25 MHz.
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with the data [dashed lines in Fig. 2(a)], a quantitative
comparison requires its inclusion in the four atom
model [24,45].
The good quantitative agreement between experiment

and theory in Fig. 2 suggests that the few atom model
captures the essential physics underlying the evolution of
the DD-coupled Rydberg gas with, and without, the control
sequences, particularly at lower Rydberg densities. At the
higher density used in Fig. 3, the accuracy of the four atom
model is reduced and the agreement with experiment is less
impressive. Specifically, the increase in atom-atom cou-
pling strength decreases the relevant interaction timescales
so that the 2 ns duration of the field step is not totally
negligible. In addition, excitation hopping outside of four
atom groups is more probable at earlier times within the
400 ns observation window. Still, the agreement is suffi-
cient to support our interpretation of the control dynamics.
Indeed, more insight into how QPM actively suppresses
dephasing, the explicit form of the observed N dependence
of the amplitude and frequency of the Rabi oscillations, and
even our rationale for describing the observed modulations
as Rabi oscillations (rather than a more generic interference
effect) is better obtained from approximate analytic expres-
sions describing the two-level quantum state evolution
within isolated nearest-neighbor atom pairs.
Applying the standard state transformation for a coher-

ently coupled two-level system, the population transfer
probability from pp to ss0 exhibits Rabi oscillations,
Pss0 ðTÞ ¼ ð2V=ΓÞ2sin2ð1

2
ΓTÞ as a function of the inter-

action time T [24,46]. Successive application of that state
transformation, describing a QPM sequence in which the
sign of the detuning alternates in N successive time zones
of duration T=N [assuming E ≫ V and Pss0 ðTÞ ≪ 1],
obtains an identical expression for Pss0 ðTÞ, provided Γ is
replaced with Γ=N [24]. Thus, we refer to the observed
modulations as Rabi oscillations. The predicted propor-
tionality between the Rabi period and N is a clear feature of
the data and simulations in Figs. 2 and 3. The observed
enhancement in Pss0 ðTÞ is not as large as the predicted
factor of N2, due to a breakdown of the assumption
Pss0 ðTÞ ≪ 1 (also responsible for the deviation from purely
sinusoidal modulations) and to non-negligible contribu-
tions from atom pairs with smaller than average separations
(and E ∼ V) [47].
Two principal factors are responsible for the suppression

of dephasing through QPM. First, as discussed previously,
the variation in Γ is significantly smaller for jEj ≫ E0,
resulting in a substantial reduction in the ensemble phase
variation Δϕ over any time interval. Second, since the
phase evolution is reversed in successive time zones
(similar to a spin echo [48]), Δϕ does not accrue over
the total interaction time T. The effect is distinct from an
echo, however, because the coupling is present throughout
the system evolution and the relative phase φ between the
superimposed pp and ss0 states advances at a nonconstant

rate within each zone. At the end of each zone in a QPM
sequence, the magnitude of Δϕ is equal to that at the
completion of zone 1, acquired during the interval T=N
[24]. Accordingly, if the ensemble dephases after a time
T ¼ τ while at constant detuning, then, with a QPM
sequence, it will not dephase until the time spent in zone
1 is T=N ¼ τ, i.e., until the total interaction time is T ¼ Nτ.
Thus, QPM extends the dephasing time by a factor of N.
Figures 2 and 3 clearly show the predicted extension of

the dephasing time with increasing N. Interestingly, since
the dephasing time and Rabi frequency are proportional to
N and 1=N, respectively, their product, which gives the
number of Rabi cycles that can be observed within the
dephasing time, is independent of N. The data and
simulation show that this relationship continues to hold
for E ∼ E0 and Pss0 ðTÞ ∼ 1.
QPM sequences can be even more effective at sup-

pressing dephasing in systems with narrower coupling-
strength distributions. One example is an ensemble of
resonantly driven atoms near the center of a Gaussian laser
beam [7–9]. Another involves interactions between trapped
atoms (or ions) whose separations are relatively well-
defined. Simulations analogous to those we have used
for random ensembles illustrate the effectiveness of QPM
sequences for creating a uniform ensemble of quantum
states in DD-coupled atom pairs (e.g., held in optical
tweezer arrays) with a narrow spread in R [24].
In the future, QPM may also be employed to suppress

microscopic decoherence resulting from time-dependent
changes in V for individual elements in an ensemble. These
may be caused, for example, by relative thermal motion of
atoms or the spatial jitter of a laser beam or trap array.
Given the reversal of the phase advance in successive QPM
zones, decoherence caused by temporal variations in V
(integrated over a total interaction time T) can be mini-
mized through the use of a sufficient number of QPM zones
with negligible changes in V during the time T=N spent in
each zone [25].
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