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We propose a two-dimensional hard-core loop-gas model as a way to regularize the asymptotically free
massive continuum quantum field theory that emerges at the Berezinskii-Kosterlitz-Thouless transition.
Without fine-tuning, our model can reproduce the universal step-scaling function of the classical lattice XY
model in the massive phase as we approach the phase transition. This is achieved by lowering the fugacity
of Fock-vacuum sites in the loop-gas configuration space to zero in the thermodynamic limit. Some of the
universal quantities at the Berezinskii-Kosterlitz-Thouless transition show smaller finite size effects in our
model as compared to the traditional XY model. Our model is a prime example of qubit regularization of an
asymptotically free massive quantum field theory in Euclidean space-time and helps understand how
asymptotic freedom can arise as a relevant perturbation at a decoupled fixed point without fine-tuning.
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The success of the standard model of particle physics
shows that at a fundamental level, nature iswell described by
a continuum quantum field theory (QFT). Understanding
QFTs nonperturbatively continues to be an exciting area of
research, since defining them in a mathematically unam-
biguous way can be challenging. Most definitions require
some form of short-distance [ultraviolet (UV)] regulariza-
tion, which ultimately needs to be removed. Wilson has
argued that continuum QFTs arise near fixed points of
renormalization group flows [1]. This has led to the concept
of universality, which says that different regularization
schemes can lead to the same QFT. Following Wilson,
traditional continuum quantum field theories are usually
regulated nonperturbatively on a space-time lattice by
replacing the continuum quantum fields by lattice quantum
fields and constructing a lattice Hamiltonian with a quantum
critical point where the long-distance lattice physics can be
argued to be the desired continuum QFT. However, univer-
sality suggests that there is much freedom in choosing the
microscopic lattice model to study a particular QFT of
interest.
Motivated by this freedom and to study continuum

quantum field theories in real time using a quantum
computer, the idea of qubit regularization has gained

popularity recently [2–10]. Unlike traditional lattice regu-
larization, qubit regularization explores latticemodelswith a
strictly finite local Hilbert space to reproduce the continuum
QFT of interest. Euclidean qubit regularization can be
viewed as constructing a Euclidean lattice field theory with
a discrete and finite local configuration space, that repro-
duces the continuum Euclidean QFT of interest at a critical
point. If the target continuum theory is relativistic, it would
be natural to exploreEuclideanqubit regularizedmodels that
are also symmetric under space-time rotations. However,
this is not necessary, since such symmetries can emerge at
the appropriate critical point. Lattice models with a finite
dimensional Hilbert space that can reproduce continuum
QFTs of interest were introduced several years ago through
the D-theory formalism [11,12] and have been proposed for
quantum simulations [13,14]. In contrast to qubit regulari-
zation, the D-theory approach allows the local Hilbert space
to grow through an additional dimension when necessary.
In this sense, qubit regularization can be viewed as the
D-theory approach for those QFTs where a strictly finite
Hilbert space is sufficient to reproduce the desired QFT.
Examples of using qubit regularization to reproduce

continuum QFTs in the infrared (IR) are well known.
Quantum spin models with a finite local Hilbert space are
known to reproduce the physics of classical spin models
with an infinite local Hilbert space near Wilson-Fisher fixed
points [15]. They can also reproduce QFTs with topological
terms like the Wess-Zumino-Witten theories [16]. Gauge
fields have been proposed to emerge dynamically at
some quantum critical points of simple quantum spin
systems [17]. From the perspective of Euclidean qubit
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regularization, recently it was shown that Wilson-Fisher
fixed points with OðNÞ symmetries can be recovered using
simple qubit regularized space-time loopmodelswithN þ 1
degrees of freedom per lattice site [18,19]. Similar loop
models have also been shown to produce other interesting
critical behavior [20–22]. Loop models are extensions of
dimer models, which are also known to describe interesting
critical phenomena in the IR [23,24]. All this evidence
shows that Euclidean qubit regularization is a natural way to
recover continuum QFTs that emerge via IR fixed points of
lattice models.
A nontrivial question is whether we can also recover the

physics of ultraviolet fixed points (UV-FPs), using qubit
regularization. In particular, can we recover massive
continuum QFTs that are free in the UV but contain a
marginally relevant coupling? Examples of such asymp-
totically free (AF) theories include two-dimensional spin
models and four-dimensional non-Abelian gauge theories.
In the D-theory approach, there is strong evidence that the
physics at the UV scale can indeed be recovered exponen-
tially quickly as one increases the extent of the additional
dimension [25–29]. Can the Gaussian nature of the UV
theory emerge from just a few discrete and finite local
lattice degrees of freedom, while the same theory then goes
on to reproduce the massive physics in the IR? For this we
will need a special type of quantum criticality where three
length scales, as sketched in Fig. 1, emerge. There is a short
lattice length scale a, where the nonuniversal physics
depends on the details of the qubit regularization, followed
by an intermediate length scale lUV ≫ a, where the
continuum UV physics sets in and the required Gaussian
theory emerges. Finally, at long length scales lIR ≫ lUV,
the nonperturbative massive continuum quantum field
theory emerges due to the presence of a marginally relevant
coupling in the UV theory. The qubit regularized theory
thus reproduces the universal continuum QFT in the whole
region lUV to lIR. The special quantum critical point must
be such that lUV=a → ∞.
Recently, a quantum critical point with these features

was discovered in an attempt to find a qubit regularization
of the asymptotically free massive nonlinear O(3) sigma
model in two space-time dimensions in the Hamiltonian
formulation [30]. Using finite size scaling techniques, it
was shown that the qubit regularized model recovers all the
three scales. In this Letter, we report the discovery of yet

another example of a quantum critical point with similar
features. In the current case, it is a Euclidean qubit
regularization of the asymptotically free massive con-
tinuum quantum field theory that arises as one approaches
the Berezinskii-Kosterlitz-Thouless (BKT) transition from
the massive phase [31,32]. In both these examples, the
qubit regularized model is constructed using two decoupled
theories and the AF-QFTemerges as a relevant perturbation
at a decoupled quantum critical point. The coupling
between the theories plays the role of the perturbation that
creates the three scales. A generic renormalization group
flow diagram of such qubit regularized theories is
illustrated in Fig. 2. An interesting feature of this discovery
is that there is no need for fine-tuning to observe some
of the universal features of the BKT transition that
have been unattainable in practice with other traditional
regularizations [33].
The BKT transition is one of the most widely studied

classical phase transitions, since it plays an important role
in understanding the finite temperature superfluid phase
transition of two-dimensional systems [34]. One simple
lattice model that captures the universal behavior of the
physics close to the phase transition is the classical two-
dimensional XY model on a square lattice given by the
classical action,

S ¼ −β
X
hiji

cosðθi − θjÞ; ð1Þ

where the lattice field 0 ≤ θi < 2π is an angle associated to
every space-time lattice site i and hiji refers to the nearest
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FIG. 1. Length scales in a lattice field theory that reproduces
asymptotically free quantum field theories.
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FIG. 2. Illustration of the renormalization group flow of a
generic qubit regularized model that reproduces the physics of the
asymptotically free QFTs. At the decoupled quantum critical
point, qubit models describe the physics of a critical system
containing two decoupled theories. However, when a small
nonzero coupling is introduced between the theories, the long-
distance physics flows toward the desired universal physics of the
UV fixed point theory.
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neighbor bonds with sites i and j. We refer to this as the
bXY model. The lattice field naturally lives in an infinite
dimensional Hilbert space of the corresponding one dimen-
sional quantum model. Using high precision Monte Carlo
calculations, the BKT transition has been determined to
occur at the fine-tuned coupling of βc ≈ 1.1199ð1Þ [35,36].
The BKT phase transition has also been studied using the
Villain model [37], which is better suited to analytic
computations, as well as topological actions [38]. While
the above approaches to the BKT transition require fine-
tuning, the massive phase near the transition can be reached
without fine-tuning through fermionic models [39]. It was
recently shown how the two-flavor Schwinger model at
θ ¼ π reproduces the exponentially small mass gap
expected near the BKT transition [40]. The model we
consider in this Letter is similar, but without explicit gauge
fields and constructed via hard-core bosons.
As one approaches the BKT transition from the massive

phase, the long-distance physics of the Eq. (1) is known to
be captured by the sine-Gordon model whose Euclidean
action is given by [39],

S ¼
Z

dxdτ

�
1

2t
ð∂μθ1Þ2 þ

t
8π2

ð∂μθ2Þ2 −
At
4π2

cos θ2

�
; ð2Þ

where t ≥ π=2. The field θ1ðx; τÞ captures the spin-wave
physics while the vortex dynamics is captured by the field
θ2ðx; τÞ. The BKT transition in this field theory language
occurs at t ¼ π=2, where the cos θ2 term becomes marginal
as one approaches the critical point and the physics is
governed by a free Gaussian theory. In this sense, at length
scales much larger than the lattice spacing, the physics of
the lattice XY model is the same as an asymptotically free
massive Euclidean continuum QFT, when β is tuned to βc
from smaller values.
Qubit regularizations of the classical XY model have

been explored recently using various quantum spin for-
mulations [41]. Lattice models based on the spin-1 Hilbert
space are known to contain rich phase diagrams [42], and
quantum field theories that arise at some of the critical

points can be different from those that arise at the BKT
transition. Also, the presence of a marginally relevant
operator at the BKT transition can make the analysis
difficult, especially if the location of the critical point is
not known. In these cases, it becomes a fitting parameter in
the analysis, increasing the difficulty. Since in our model
the location of the critical point is known, our model can be
analyzed more easily.
The model we consider in this Letter can be compactly

written in terms of the Grassmann integral

Z ¼
Z

½dψ̄dψ �½dχ̄dχ� exp
�
λ
X
i

ψ̄ iψ iχ̄iχi

�

× exp

�X
hiji

ðψ̄ iψ iψ̄ jψ j þ χ̄iχiχ̄jχjÞ
�
; ð3Þ

where on each site i of the square lattice we define four
Grassmann variables ψ̄ i, ψ i, χ̄i, and χi and assume periodic
lattices with L sites in each direction. We refer to Eq. (3) as
the fXY model. Using the fermion bag approach [43], we
can integrate the Grassmann variables and write the
partition function as a sum over dimer configurations
whose weight is given by λNI, where NI is the number
of instantons (or Fock-vacuum sites). An illustration of
such a configuration is given in Fig. 3. The interlayer
dimers resemble t’Hooft vertices in the fermionic theory
[44–46]. Thus, λ plays the role of the fugacity of instantons.
It is easy to verify that the action of our model is invariant
under ψ̄ jψ j → eiσjθψ̄ jψ j and χ̄jχj → e−iσjθχ̄jχj, where
σj ¼ � tracks the parity of the site j. The critical behavior
of this U(1) symmetry is connected to the BKT transition.
The configurations in Fig. 3 can also be viewed as

configurations of oriented self-avoiding loops on a square
lattice with Fock-vacuum sites if the dimers are given
orientation as explained in the caption of the figure. The
model we consider in this Letter is a variant of the qubit
regularized XY model introduced in Euclidean space
recently [4]. The loop model can be viewed as a certain
limiting case of the classical lattice XY model Eq. (1)

FIG. 3. The left figure shows an illustration of a dimer configuration that contributes to the partition function of the model arising from
Eq. (3). Interlayer dimers (or instantons) have weight λ while the intralayer dimers have weight 1. By giving the dimers an orientation as
illustrated, each dimer configuration can also be viewed as a configuration of self-avoiding oriented loops. The configuration on the right
is such a mapping of the configuration on the left. The instantons are mapped into Fock-vacuum sites, shown as blue circles. The dimer
model shows that the loop model is critical when λ ¼ 0.
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written in the world-line representation [47], where the
bosons are assumed to be hard-core. The main difference
between our model in this Letter and the one introduced in
[4] is that closed loops on a single bond are now allowed.
Such loops seemed unnatural in the Hamiltonian frame-
work that motivated the previous study, but seem to have
profoundly different features in two dimensions because it
is possible to view the loop configurations as a configu-
ration of close-packed oriented dimers and argue for a
critical point in our model at λ ¼ 0 and a massive phase for
λ > 0. The previous model does not have this property [48].
Using worm algorithms (see Ref. [49]) we study our

model for various values of L and λ. At λ ¼ 0, one gets two
decoupled layers of close-packed dimer models, which is
known to be critical [50–53]. The effect of λ ≠ 0 was
studied several years ago, and it was recognized that there is
a massive phase for sufficiently large values of λ [54,55].
However, the scaling of quantities as λ → 0 was not
carefully explored. Recently, the subject was reconsidered
[56], and the emergence of a long crossover phenomenon
was discovered for small λ as a function of L. However, the
universal properties of this crossover being related to the
UV physics at the BKT transition was not appreciated. In
this Letter, we demonstrate that the observed crossover
phenomena captures the asymptotic freedom of Eq. (2). We
do this by comparing the universal behavior of Eq. (3) with
the traditional XY model Eq. (1) near the massive phase of
the BKT transition [35,57,58].
To compare universal behaviors of Eq. (1) and Eq. (3) we

compute the second moment finite size correlation length
ξðLÞ defined as ξðLÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðχ=FÞ − 1

p
=½2 sinðπ=LÞ� (see

Ref. [59]), where χ ¼ Gð0Þ and F ¼ Gð2π=LÞ are defined
through the two point correlation function

GðpÞ ¼
X
j

eipxhOþ
ðx;τÞO

−
ð0;0Þi: ð4Þ

In the above relation, j is the space-time lattice site with
coordinates ðx; τÞ and Oþ

j , O
−
j are appropriate lattice fields

in the two models. In the XY modelOþ
j ¼ eiθj ,O−

j ¼ e−iθj ,
while in the dimer model Oþ

j ¼ O−
j ¼ ψ̄ jψ j. We demon-

strate that the step-scaling functions [i.e., the dependence of
ξð2LÞ=ξðLÞ on ξðLÞ=L] of the two lattice models show
excellent agreement with each other in the scaling regime
lUV ≫ a, in Fig. 4.
Another interesting universal result at the BKT transition

is the value of the helicity modulus, which can be defined
using the relation, ϒ ¼ hQ2

wi, where Qw is the spatial
winding number of bosonic worldlines. In the XY model
Eq. (1), it is usually defined using a susceptibility of a twist
parameter in the boundary conditions [35]. In our model,
we can easily compute the winding charge Qw in each loop
configuration illustrated in Fig. 3. The universal result
in the massive phase as we approach the BKT transition
is that ϒ ≈ 2=π in the UV up to exponentially small

corrections [35], although in the IR ϒ ¼ 0. While it is
difficult to obtain the UV value in lattice calculations using
the traditional model Eq. (1), in our model, we can see it
emerge nicely at λ ¼ 0.01. We demonstrate this in Fig. 5.
Again, as expected, the value of ϒ when λ ¼ 0 is very
different, since it is a theory of free bosons but at a different
coupling. Using the different value of the coupling gives
ϒ ≈ 0.606 [60]. Our results provide strong evidence that
the AF-QFT at the BKT transition emerges from our dimer
model when we take the limit L → ∞ followed by λ → 0.
The opposite limit leads to the critical theory of the
decoupled dimer model.

FIG. 4. The figure shows the universal step-scaling function
[i.e., ξð2LÞ=ξðLÞ vs ξðLÞ=L] obtained from the XY model Eq. (1)
(solid line) [60] and compares it with data from the model Eq. (3)
at λ ¼ 0.01 (red), 0.2 (blue), 0.4 (purple), and 0.6 (green), for
various lattice sizes shown with different symbols. For small
values of L, our data deviate from the solid line. We define lUV
as the minimum value of L when the data begin to fall on the
solid line. From the figure we estimate lUV ≈ 80 for λ ¼ 0.6
and lUV ≈ 160 for λ ¼ 0.4. For very small λ we expect the
ξðLÞ=L to approach the universal UV prediction of ξðLÞ=L ¼
0.750 691 2… (see Ref. [35]), when L ∼ lUV before beginning to
follow the solid line. We see this at λ ¼ 0.2 and 0.01. Since at
these couplings lUV > 1280, we predict that the data at these
couplings will also eventually follow the solid line, but only for
L ≫ lUV, which we cannot access. To show this feature, in the
inset we plot ξðLÞ=L as a function of L at λ ¼ 0.01. Note that
the data approaches ξðLÞ=L ¼ 0.750 691 2… when L ∼ lUV
as expected. Based on our prediction above, this is only a pla-
teau and that for L ≫ lUV (which we cannot access) ξðLÞ=L
will eventually approach zero. The inset also shows that the
large L behavior of λ ¼ 0 is very different and stabilizes at
ξðLÞ=L ¼ 0.4889ð6Þ. In the inset we also show the data from
[35] in the traditional XY model [Eq. (1)] at two values of β close
to the transition. These data are still far from the universal value
due to logarithmic corrections as explained in [35].
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