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We consider the preparation of matrix product states (MPS) on quantum devices via quantum circuits of
local gates. We first prove that faithfully preparing translation-invariant normal MPS of N sites requires a
circuit depth T ¼ ΩðlogNÞ. We then introduce an algorithm based on the renormalization-group
transformation to prepare normal MPS with an error ϵ in depth T ¼ O½logðN=ϵÞ�, which is optimal.
We also show that measurement and feedback leads to an exponential speedup of the algorithm to
T ¼ O½log logðN=ϵÞ�. Measurements also allow one to prepare arbitrary translation-invariant MPS,
including long-range non-normal ones, in the same depth. Finally, the algorithm naturally extends to
inhomogeneous MPS.
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One of the most important tasks in many-body physics
and quantum information science is the preparation of useful
or relevant states. This has spurred a large effort to find ways
to prepare states, for example, adiabatically [1], dissipatively
[2,3], or using quantum circuits. A natural class of states to
consider are matrix product states (MPS), because they
efficiently approximate ground states of gapped local
Hamiltonians [4–6]. Moreover, many paradigmatic states
can neatly be expressed as MPS, such as the cluster [7],
Greenberger-Horne-Zeilinger (GHZ) [8], W [9], and
Affleck-Kennedy-Lieb-Tasaki (AKLT) states [10,11].
Several ways are known to prepare MPS. Using

unitary quantum circuits with strictly local gates, all
MPS can be prepared using a sequential quantum circuit
of depth T ∝ N [12]. This is provably optimal for long-
range correlated states such as the GHZ state [13].
However, for so-called normal MPS [14], which have
short-range correlations, shorter depths are possible.
Indeed, when allowing for a small error ϵ, they can be
obtained by acting on a product state with a constant-
depth circuit of quasilocal gates—gates whose support
grows (poly-)logarithmically with system size [15,16].
However, such quasilocal gates have to be compiled
into gates with strictly local support, and in the worst
case such a compilation leads to circuits with a depth
scaling exponentially in the support, and thus as

polyðNÞ. However, since normal MPS all lie in the
topologically trivial phase, one can construct adiabatic
paths with a guaranteed gap [17], which means normal
MPS can provably be prepared adiabatically in T ¼
O½polylogðN=ϵÞ� [18] (also see [19]).
Despite these results, it remains unclear if the scaling of

the state-of-the-art algorithm [18] is optimal, or if there
exist even faster algorithms to prepare normal MPS.
Proving optimality requires finding a tight lower bound
on the depth, or, equivalently, its complexity, which is
believed to be difficult in general [13,20,21].
Here, we first resolve the question of asymptotically

optimal preparation of normal translation-invariant (TI)
MPS. We prove that any circuit faithfully preparing them
requires a depth T ¼ ΩðlogNÞ, i.e., it has to scale at least
logarithmically with N. We then introduce an algorithm
that saturates this bound and prepares all normal TI-MPS in
a circuit depth

T ¼ O½logðN=ϵÞ� ð1Þ

using strictly local gates. This is asymptotically faster than
the previously fastest known algorithm (adiabatic prepa-
ration [18]) and also asymptotically optimal. Moreover, the
algorithm naturally extends to inhomogeneous MPS that
are suitably short-range correlated.
If one has additionally access to measurements and

feedback, it is known that MPS can be prepared exactly
in a depth T ¼ OðlogNÞ by expressing them in terms of the
multiscale entanglement renormalization ansatz (MERA)
[22]. Including measurements also yields a speedup for our
algorithm, and allows us to extend it to non-normal MPS,
such that all TI-MPS can provably be prepared in depth
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T ¼ O½log logðN=ϵÞ�: ð2Þ

This is exponentially faster than the best known measure-
ment assisted protocol [22]. It also shows that our
lower bound can be violated with access to measurements.
As a byproduct, our work also proves that the finite-
range MERA [23] can approximate normal TI-MPS in
O½log logðN=ϵÞ� layers.
Our algorithm fundamentally builds on the renormaliza-

tion-group (RG) transformation. The RG procedure
consists of blocking neighboring sites and discarding
short-range correlations. After consecutive RG transforma-
tions, the state asymptotically converges to its fixed-point
state [24], which has only nearest-neighbor correlations for
normal TI-MPS [24,25]. This happens rapidly since it
suffices to block only O½logðN=ϵÞ� sites to approximate
well the fixed-point state [16]. Our algorithm first prepares
this fixed point, and subsequently reintroduces the short-
range correlations by applying an isometry of support
logðN=ϵÞ [cf. Fig. 1(a)]. Our key contribution is that
we can prove through an explicit construction (inspired
by earlier works [12,22,24]) that this isometry can be
implemented with a strictly local circuit of depth T ¼
O½logðN=ϵÞ� [cf. Fig. 1(b)].When assisted bymeasurements
[cf. Fig. 1(c)], the depth of the isometry can be further
reduced, while the GHZ-like fixed point of long-range
correlated MPS can be prepared in constant depth
[16,26]. Together, this leads to the circuit depth T ¼
O½log logðN=ϵÞ� to prepare almost arbitrary (including all
TI) MPS.
Preliminaries.—For simplicity, we first consider

(normalized) TI-MPS,

jϕNi ∝
Xd

i1;…;iN¼1

TrðAi1 � � �AiN Þji1 � � � iNi; ð3Þ

and later extend to the inhomogeneous case. Above Ai are
D ×Dmatrices (D is the bond dimension) with i ¼ 1;…; d
(physical dimension). We will extensively use graphical

notation and identify .

To each tensor A we associate its transfer matrix

ð4Þ

A tensor is called “normal” if (i) it is irreducible (Ai have no
nontrivial common invariant subspace), and (ii) EA has a
unique largest eigenvalue λ1 ¼ 1 and no other of the same
magnitude [4,14]. Its correlation length is defined via the
subleading eigenvalue ξ ¼ −1= lnðjλ2jÞ. After a gauge
transformation [14], EA of a normal tensor can be brought
into the form

ð5Þ

where the leading right eigenvector ρ > 0 (Hermitian and
positive definite) [14,27], h1jρi ¼ TrðρÞ ¼ 1, and R has
spectral radius less than 1.
Blocking q sites together yields a new tensor B

ð6Þ

with physical dimension dq, the same bond dimension D,
and transfer matrix EB ¼ Eq

A. EB approaches its fixed point
in the limit q → ∞ [24,25], which, for normal tensors,
is E∞ ¼ jρih1j.
Our goal is to devise an algorithm that approximates the

target N-site MPS jϕNi by jϕ̃Ni with error ϵ ¼ ϵðϕN; ϕ̃NÞ,
where

ϵðϕ;ψÞ ¼ 1 − jhϕjψij ð7Þ

and jϕ̃Ni is prepared using a local quantum circuit. Our first
result is that it is impossible to approximate well normal TI-
MPS in depth oðlogNÞ. Subsequently, we provide an
explicit algorithm with the asymptotically optimal
depth O½logðN=ϵÞ�.
Lower bound.—Given (i) fjϕNig a sequence of normal-

ized TI-MPS on N sites, generated by a normal tensor A,
with finite correlation length ξ > 0 [cf. Eq. (3)], and
(ii) fjψNig a sequence obtained from depth-T local
quantum circuits applied to product states, we are interested
in determining how fast T has to grow in order to
approximate the MPS well, as measured by the error
ϵ ¼ ϵðϕN;ψNÞ. We prove here that no quantum circuit
with depth T ¼ oðlogNÞ can faithfully approximate
this class.

FIG. 1. Algorithm for MPS preparation. (a) After blocking, we
approximate the state through its RG fixed point (nearest-
neighbor entangled pairs for normal tensors [Eq. (12)]) combined
with isometries V that encode the local structure of the state.
(b) We use RG to construct an efficient circuit for V, which can be
further expressed with a low-depth circuit of local gates. (c) Our
algorithm extends to non-normal (i.e., long-range correlated)
MPS with GHZ-like fixed points [Eq. (19)] depicted here. Using
quantum circuits assisted by measurements, both the fixed-point
states and the isometry V can be implemented efficiently.
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Theorem 1.—If T ¼ oðlogNÞ there is some N0 such that
for all N > N0 we have ϵ > 1=2.
The proof can be found in the Appendix. To establish

this result, we use the fact that jψNi have a strictly finite
light cone, whereas in a normal TI-MPS jϕNi correlation
functions decay only exponentially. This leads to a
mismatch in the expectation value of correlators outside
the light cone, which gives a lower bound on the error
between the two states. We additionally use the fact that
sufficiently distant parts of the system are statistically
independent, such that the error accumulates with increas-
ing system size N, unless the circuit depth grows suffi-
ciently quickly.
The algorithm.—We now present the key steps for our

algorithm. We will (i) approximate jϕNi by jϕ̃Ni, then
(ii) show that jϕ̃Ni can be efficiently prepared, and
(iii) prove that the approximation error decays sufficiently
fast with N. We begin with the case of normal TI-MPS and
return to the general case later.
Approximation through the fixed-point state.—To make

the approximation, we follow the steps of the RG trans-
formation [24]. After blocking q sites, we perform a polar
decomposition on the blocked tensor B, interpreting it
as a map from the D2-dimensional virtual space to the
dq-dimensional physical space [28]. This way we can
write B ¼ VP where V is an isometry with V†V ¼ 1D2

and P > 0 is positive definite. Thus,

ð8Þ

The approximation consists of replacing P by its fixed-
point version P∞ in the tensor B, while keeping the
isometry V intact. Graphically,

ð9Þ

Later we will assign meaning to the approximation sign in
Eq. (9) by bounding the global error between the MPS jϕNi
and jϕ̃Ni resulting from the two tensors, B and B̃. To obtain
a vanishing error in the thermodynamic limit we will
need q ∝ logN, which we assume for now and justify
subsequently.
Preparing the approximate state.—The approximate

state jϕ̃Ni can be prepared by acting on the fixed-point
state with a product of unitaries of support q (for simplicity
D ¼ d in the illustration):

ð10Þ

The unitary is constructed such that it implements the
required isometry when acting on a product state j0i⊗l over
the “central” region (l ¼ 2 in the illustration):

ð11Þ

From dimension countingD2dl ≥ dq, thus l ∼ q. Note that
for normal TI-MPS the fixed-point state jΩi ¼⊗N=q

i¼1

jωiRiLiþ1
is a tensor product of entangled pairs,

ð12Þ

each with support over the “right” and “left” Hilbert spaces
of neighboring sites (dimRi ¼ dimLiþ1 ¼ D). It can thus
be prepared from a product state with a constant-depth
circuit.
So far, it is not obvious that the resulting circuit can be

expressed efficiently in terms of strictly local gates,
because the unitaries in Eq. (11) are only quasilocal,
i.e., having support q ∝ logN. While a naive bound on the
circuit depth would be polyðNÞ, here we use the fact that
U comes from an MPS to show that in reality it can be
implemented in T ¼ OðqÞ. We do this by providing
two explicit and exact decompositions of U in terms of
gates with constant support, the “sequential-RG” and the
“tree-RG.”
The sequential-RG circuit.—We can express the unitary

in Eq. (10) in terms of the original MPS by applying the
inverse of P to its virtual legs [30],

ð13Þ
where in the last step we set A0i ¼ Ai ⊗ 1D and contracted
P−1 with the rightmost A0 to obtain C. As in sequential
preparation of MPS [12] and in the left-canonical
form [31], we can now iteratively apply singular value
decompositions, starting from the tensor on the left and
moving right, but stopping before the last tensor [32]. This
defines a new set of tensors that describe the same isometry
V but now each tensor is a local isometry (arrows indicate
isometry direction, q ¼ 4 in illustration):

ð14Þ
with every Vi an isometry V†

i Vi ¼ 1D0
i
satisfying D0

i ≤ D2

(D0
qþ1 ¼ 1). Importantly, C̃ ¼ V1 is automatically also an

isometry, as
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ð15Þ

Since this sequential circuit comprises q sites, its depth is
OðqÞ. This scaling is unchanged if we additionally take into
account that the inputs of the unitary in Eq. (13) are
separated by OðqÞ sites, which requires one to implement
SWAP gates.
The tree-RG circuit.—Blocking two neighboring sites

followed by a polar decomposition is the basis for the
real-space RG transformation and halves the correlation
length [24,35,36]. Instead of directly blocking q sites, we
can repeatedly apply this transformation k ∼ log2 q times to
the same effect [illustration below, and in Fig. 1(b)]. This
generates a treelike circuit with k layers, in which each
layer but the lowest consists of isometries from dimension
D2 to D4 (below Ak is obtained from A by blocking k sites,
and q ¼ 8):

ð16Þ

In Eq. (16), the lowest layer is again the part that is replaced
by the fixed-point state in our algorithm, i.e., a product of
jωi [cf. Eq. (12)]. In this scheme, the lowest isometry VðkÞ
acts across a distance q. Though not strictly local, this can
be done in a depth OðqÞ utilizing SWAP gates. Subsequent
isometries act over distances q=2, q=4 and so forth, leading
to an overall circuit depth T ¼ OðqÞ.
Approximation error.—So far, we constructed efficient

circuits for preparing jϕ̃Ni, having assumed that we block q
sites. The scaling of q is a consequence of the following
Lemma, which is adapted from Ref. [16].
Lemma 1.—Given a sequence of TI-MPS generated from

a normal tensor, and for all γ < 1=2,

ϵðϕ̃N;ϕNÞ ¼ O

�
N
q
e−γq=ξ

�
: ð17Þ

The proof can be found in [37]. Using Lemma 1, it
follows that q ¼ O½logðN=ϵÞ�. In particular, blocking
q ¼ ½2ξð1þ ηÞ lnN� ∝ logN sites gives ϵ ¼ OðN−ηÞ for
any η > 0.
We also numerically illustrate the exponential decay of

Eq. (17) in [37] for preparing the 1D AKLT state [10,11]
and an MPS family with tunable correlation length [44],
which demonstrates that the circuit is also efficient in
practice.
Inhomogeneous short-range correlated MPS.—Our

results can be straightforwardly extended to MPS that
have a finite correlation length, but are not TI. The setting

here is that we are given a sequence of MPS fjϕNig
with bond dimension at mostD. We define such a sequence
to have finite correlation length if, after blocking
q ¼ OðlogNÞ times, the resulting states can be approxi-
mated up to quasilocal isometries by a state consisting of
nearest-neighbor entangled pairs jΩi ¼⊗N=q

i¼1 jωiiRiLiþ1
,

with an error ϵðΩ;ϕposÞ → 0 as N → ∞. Here,

ð18Þ

arises after blocking q sites and keeping the positive part of
the decomposition of jϕNi. If the finite correlation
assumption is satisfied, then the preparation scheme con-
sists of preparing jΩi and implementing the isometry,
decomposed with either of the two methods. The resulting
total depth is againO½logðN=ϵÞ� with error ϵðΩ;ϕposÞ, as in
the TI case.
In the Supplemental Material [37] we numerically show

that this protocol can prepare inhomogeneous randomMPS
[45–48] efficiently. For that, we use a simple extension of
the Evenbly-Vidal algorithm [49,50], which efficiently
variationally finds jΩi. This illustrates that our finite
correlation length assumption, as defined earlier, is satisfied
in a practical setting.
Preparations using measurements.—Measurements and

subsequent conditional unitaries can make state preparation
much faster [22,26,51–55]. Here, we elaborate how such
measurements could be used in our algorithm.
Tree-RG circuit with measurements.—Local measure-

ments and conditional local unitaries are the standard
framework to perform quantum teleportation [56,57],
which can be used to reduce the depth of the tree-RG
circuit. Isometries appearing in Eq. (16) act on a constant
number of sites, which, although spatially separated, can be
teleported at neighboring registers with a constant over-
head. This can be achieved by creating nearest-neighbor
entangled pairs, then performing simultaneous measure-
ments, and correcting (without postselection) based on the
measurement outcomes [58] (this process is also detailed
in Ref. [22]).
Therefore every isometry in Eq. (16) takes constant

time using measurement. Crucially, however, the tree-
RG circuit requires only O½log logðN=ϵÞ� layers (in
contrast to Ref. [22]). Since the fixed-point state can be
prepared in constant time as before, this gives a preparation
algorithm for short-range correlated MPS with depth
O½log logðN=ϵÞ�.
Long-range MPS using measurements.—Another con-

sequence of including measurements is that the creation of
GHZ-like states jχMi ¼

P
b
i¼1 αijii⊗M becomes possible in

only constant depth [16,26,59]. These states are closely
related to the fixed points of TI-MPS [33], which, up to an
isometry, take the form [25]
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jΩ0i ¼
Xb
j¼1

αðNÞ
j ⊗

N=q

i¼1
jωjiRiLiþ1

: ð19Þ

The normal case corresponds to b ¼ 1 for which jΩ0i ¼ jΩi
while, in general, b is upper bounded by the number of

blocks in the canonical form andαðNÞ
j maydepend onN [25].

Importantly, the different jωji are orthogonal [25], which
suggests a preparation procedure for jΩ0i. First create
jχN=qi, which can be done in constant depth with mea-
surements (following, e.g., Ref [16]). Subsequently, apply
in parallel the isometries W∶ jji ↦ jωjiRiLiþ1

such that

jΩ0i ¼ W⊗N=qjχN=qi, which also takes constant depth.
In [37] we show how to explicitly obtain a state of the

form Eq. (19) that approximates well the target jϕNi up to
local isometries by blocking q ∝ logðN=ϵÞ sites. As a
result, following the same steps as in the tree-RG circuit
with measurements we have a scheme that approximates
all TI-MPS (short- or long-range correlated) with depth
T ¼ O½log logðN=ϵÞ� [cf. Eq. (2)]. If instead measurements
are only used for the preparation of jχN=qi, the depth
is O½logðN=ϵÞ�.
Our construction generalizes to inhomogeneous long-

range correlated MPS exactly as in the short-range case.
Connection to MERA.—The circuit in the tree-RG

scheme can be interpreted as a finite-range MERA with
Oðlog logNÞ layers, namely a shallow tensor tree acting on
the fixed-point state. Specifically, the isometries VðiÞ
[cf. Eq. (16)] are identified with the isometries in finite-
range MERA, and all disentanglers are the identity, save for
the first layer, which is identified with the single layer of
unitaries that prepare the fixed-point state. Hence, within
the approximation error ϵ,

normal TI-MPS ⊂
finite-range MERA

withOðlog log NÞ layers: ð20Þ

Discussion and outlook.—Our results also imply that
MPS in the same phase can be transformed into each other
using a log-depth circuit, in contrast to the well-known
quasilocal evolution corresponding to polylogarithmic
depth circuit [17,60–62]. It would be interesting to explore
whether our results could be exploited for applications
other than state preparation. Specifically, a number of
protocols [50,63–67] implicitly or explicitly depend on
the ability to prepare (or disentangle) MPS using a
sequential circuit. It may be possible to replace the
sequential circuit with ours to reduce the circuit depth in
these protocols. Another direction would be to extend our
lower-bound proof and the preparation algorithm to prepare
certain higher dimensional tensor network states [34].
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Appendix: Proof of Theorem 1.—Before we present the
proof, let us introduce the following lemma, which we will
use to distinguish the states based on the mismatch
between states with strictly finite correlation length and
states with exponentially decaying correlations.
Lemma 2 (exponentially decaying correlations).—Let

fjϕNig be a sequence of TI-MPS generated by an injective
tensor A with finite correlation length ξ > 0. Then, we can
always find two local operators O1, O0

s acting on spins 1
and swith kOk ¼ kO0k ¼ 1 such that for any integer s > 1
and sufficiently large N,

hϕN jO1jϕNi ¼ hϕN jO0
sjϕNi ¼ 0; ðA1aÞ

hϕN jO1O0
sjϕNi ≥ ce−ðs−1Þ=ξ; ðA1bÞ

where c > 0 is independent of N, s.
Proof.—Consider the connected correlation function

Δ ¼ hϕN jO1O0
sjϕNi − hϕN jO1jϕNihϕN jO0

sjϕNi; ðA2Þ

where O1 and Os are two (potentially different) operators
placed at sites 1 and s. We have

Δ ¼ 1

c2N

h
Tr
�
EN−s−1
1 EOEs−1

1 EO0
�

− Tr
�
EN−1
1 EO

�
Tr
�
EN−1
1 EO0

�i
; ðA3Þ

where the normalization cN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr
�
EN
1

�r
, and

EQ ¼
Xd
i;j¼1

hijQjjiðAiÞ� ⊗ Aj; Q∈ f1;O;O0g; ðA4Þ

where d is the physical dimension of the MPS. Given
the spectrum of E1 we can always take N sufficiently
large so that we can approximate with an arbitrarily
small error, EN−1

1 ¼EN−s−1
1 ¼jR1ihL1jþOðe−N=ξÞ, where

ξ ¼ −1= lnðjλ2jÞ and 1 ¼ λ1 > jλ2j > … are the eigenval-
ues of E1. Note that in the main text we use the gauge in
which jR1i ¼ jρi and jL1i ¼ j1i. Here, hL1jR1i ¼ 1, so
that cN ≈ 1 and
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Δ ≈
XD2

i¼2

λs−1i hL1jEOjRiihLijEO0 jR1i; ðA5Þ

where D is the bond dimension and we have written
Es−1
1 ¼ P

i λ
s−1
i jRiihLij. Since the tensor A is injective

[14], we can always choose O (and O0), such that the
corresponding transfer matrix EO ¼ jAihBj for arbitrary A,
B (up to a normalization constant). In particular, we can use
this to impose that

hLijEOjRii ¼ hLijEO0 jRii ¼ 0; ∀ i ðA6aÞ

hL1jEOjRii ¼ hLijEO0 jR1i ¼ 0; ∀ i > 2; ðA6bÞ

hL1jEOjR2ihL2jEO0 jR1i ¼ c0 > 0: ðA6cÞ

The first line ensures (A1a), while the second and third
ensure (A1b) for sufficiently large N, with c ¼ c0=2, where
1=2 is an arbitrary constant chosen for concreteness. ▪
Now, we can prove Theorem 1. Let fjϕNig be a

sequence of TI normalized MPS on N sites generated by
a normal tensor A, and fjψNig a sequence of states obtained
by applying a depth-T local quantum circuit to a product
state and define the error ϵ ¼ 1 − jhϕN jψNij.
Theorem 1 (restated).—If T ¼ oðlogNÞ there is some

N0 such that for all N > N0 we have ϵ > 1=2.
Proof.—Let us assume that T ¼ o½logðNÞ� and T > 2ξ,

since we can always add layers of identity operators to
increase the depth of the circuit. We approximate fjϕNig
through fjϕ̃Nig [cf. Eq. (10)] obtained by blocking
qN ¼ ⌈2ð1þ ηÞξ lnN⌉ with η > 0 and use Lemma 1 to
bound the error as

ϵ ¼ 1 − jhϕ̃N jϕNij < c0N−η ðA7Þ

for some constant c0 independent of system size. We takeN
such that we have a large number of blocks, all of the same
size, qN , except for the last one, which may be larger. This
is always possible, as qN ¼ OðlogNÞ. We also take N large
enough to ensure qN > T.
We thus have

dðϕN;ψNÞ ≥ dðψN; ϕ̃NÞ −
ffiffiffiffiffiffiffi
2c0

p
N−η=2; ðA8Þ

where dðρ; σÞ ¼ kρ − σk1=2 is the trace distance [58], as
well as an upper bound on trace distance from fidelity
combined with Eq. (A7)

dðϕN; ϕ̃NÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhϕN jϕ̃Nij2

q
≤

ffiffiffiffiffiffiffi
2c0

p
N−η=2: ðA9Þ

In the following, we will find a lower bound to the first term
in Eq. (A8) to make the difference larger than 1=2. We will
also drop the subscript N to simplify notation.

To obtain a bound on the distance of jψNi and jϕ̃Ni, let
us consider instead a suitable subsystem. To that end, we
divide the chain into bN=ð2qÞc blocks of size 2q each, with
the last block potentially smaller than 2q. We then trace
over all 2q spins at the sites contained in the intervals
½4mqþ 1; 2ð2mþ 1Þq�, with m ¼ 0; 1;… in both states
jϕ̃i and jψi. In case the last block we constructed is smaller
than 2q, we trace it as well. If we perform such an operation
on jϕ̃ihϕ̃j, we obtain a product state

ρ ¼ ρ⊗k
0 ; ðA10Þ

which follows from the definition of jϕ̃Ni and the fact that it
is invariant under translation by q sites. We have

k ¼ bN=4qc: ðA11Þ

Analogously, applying the same trace to jψihψ j we also
obtain a product state, because q > T,

σ ¼ σ1 ⊗ … ⊗ σk: ðA12Þ

Using the fact that the trace distance is contractive under
tracing, and bounding it in terms of the Uhlmann fidelity,
we have [58]

dðϕ̃;ψÞ ≥ dðρ; σÞ ≥ 1 − Fðρ; σÞ; ðA13Þ

with the Uhlmann fidelity between two density matrices ρ
and σ defined as Fðρ; σÞ ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp
.

Given that ρ and σ are product states, we have

Fðρ; σÞ ¼
Yk
i¼1

Fðρ0; σiÞ ≤ ð1 − δÞk=2; ðA14Þ

where δ ¼ mini dðρ0; σiÞ2, and where we have used another
bound between the fidelity and the trace distance [58].
Next we will lower bound δ using Lemma 2. However,

we have to be a bit careful since this lemma applies to ϕ
instead of ϕ̃. Fortunately, we can use Eq. (A9) to replace
one with the other. For the sake of concreteness, we will
bound dðρ0; σ1Þ but the same analysis applies to every σi.
Let us take s ¼ 2T þ 1, and the operators O;O0 from

Lemma 2 to define

aQ ¼ hϕjQjϕi; ðA15Þ

ãQ ¼ Trðρ0QÞ ¼ hϕ̃jQjϕ̃i; ðA16Þ

bQ ¼ Trðσ1QÞ ¼ hψ jQjψi; ðA17Þ

where Q∈ fO1;O0
s;O1O0

sg. Given that kOk ¼ kO0k ¼ 1,
we can bound
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dðρ0; σ1Þ ≥ max
Q¼O1;O0

s;O1O0
s

���jãQj − jbQj
���: ðA18Þ

According to Lemma 2, aO1
¼ aO0

s
¼ 0, and

aO1O0
s
> μ ¼ c1e−2T=ξ: ðA19Þ

In order to use Eq. (A18), we need to connect ãQ to aQ.
Using Eq. (A9), we choose sufficiently large N to obtain
dðϕ̃;ϕÞ ≤ μ=3. This immediately implies that jãOj; jãO0 j <
μ=3 and ãO1O0

s
> 2μ=3. Moreover, since ψ is created from a

product state by a depth-T circuit, every connected corre-
lation for operators at a distance larger than 2T vanishes.
Since s ¼ 2T þ 1 we therefore have bO1O0

s
¼ bO1

bO0
s
. We

now show that for any choice of bO1
, bO0

s
, the distance

dðρ0; σ1Þ is bounded below by a constant. Thus, we
minimize Eq. (A18) with respect to x1 ¼ bO1

and x2 ¼ bO0
s
,

imposing μ < 1=2:

dðρ0; σ1Þ ≥ min
x1;x2

�
max

�����x1 − μ

3

����;
����x2 − μ

3

����;
���� 2μ3 − x1x2

����
�	

¼ min
x
½maxðjx − μ=3j; j2μ=3 − x2jÞ� > μ=3:

ðA20Þ

From this it immediately follows that δ > μ2=9.
Putting Eqs. (A20) and (A14) into Eq. (A8), we arrive at

dðϕ;ψÞ > 1 − ð1 − μ2=9Þk=2 −
ffiffiffiffiffiffiffi
2c0

p
N−η: ðA21Þ

The last term is negligible for large N. If then k > 2=δ, one
has that ð1 − δÞk=2 < 1=e and thus dðϕ;ψÞ > ffiffiffiffiffiffiffiffi

3=4
p

, which
implies ϵ > 1=2.
So we need to find N for which k > 2=δ. Using

Eq. (A11) and the definition of q, we have
k > N=ð10ξ lnNÞ, where we chose η < 1=4. Using
δ > μ2=9 and the definition of μ [Eq. (A19)], we find
ð18e4T=ξÞ=c21 > 2=δ. Putting this together, we need to find
N such that

k >
N
5q

>
Nγ

10ξ logN
>

18

c21
e4T=ξ >

2

δ
: ðA22Þ

Since T ¼ o½logðNÞ�, we can always find an N0 such that
this is fulfilled for all N > N0. ▪
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