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We explore the effects of spatial locality on the dynamics of random quantum systems subject to a
Markovian noise. To this end, we study a model in which the system Hamiltonian and its couplings to the
noise are random matrices whose entries decay as power laws of distance, with distinct exponents αH , αL.
The steady state is always featureless, but the rate at which it is approached exhibits three phases depending
on αH and αL: a phase where the approach is asymptotically exponential as a result of a gap in the spectrum
of the Lindblad superoperator that generates the dynamics, and two gapless phases with subexponential
relaxation, distinguished by the manner in which the gap decreases with system size. Within perturbation
theory, the phase boundaries in the ðαH; αLÞ plane differ for weak and strong decoherence, suggesting
phase transitions as a function of noise strength. We identify nonperturbative effects that prevent such phase
transitions in the thermodynamic limit.
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The dynamics of generic quantum systems has been a
central theme in contemporary many-body physics, span-
ning disciplines from quantum information to condensed
matter and high-energy physics. A key conceptual tool in
this context is random matrix theory (RMT), which pre-
scribes studying systems governed by dynamics that is as
random as is allowed by the symmetries and other con-
straints of the underlying problem of interest. RMT has been
used over the past four decades to study quantum chaos in
closed systems that lack spatial structure [1,2]. Recently,
various extensions of RMT that include forms of spatial
structurewere considered. These range frombanded random
matrices [3] (which represent generic local single-body
problems), to random circuits [4] (which represent random
many-body problems with no structure beyond the spatial
locality of interactions), and the SYK model [5] (in which
interactions are few body but not otherwise local). Such
explorations have led to a deeper understanding of quantum
chaos, entanglement dynamics, and related questions.
Despite some early applications of RMT to open quan-

tum systems [6–9], studies of systems whose Hamiltonian
and couplings to a Markovian bath are drawn from RMT
ensembles have only recently appeared [10–22]. A notable
conclusion that has emerged is that such fully nonlocal
open systems are rapidly equilibrating, i.e., the spectrum of
their Lindblad superoperator is generically gapped in the
thermodynamic limit. This conclusion is supported by
numerical evidence, exact solutions, and general bounds
[12,13]. In contrast, one does not expect a gap in the
opposite limit of local dissipative dynamics where
the slowest-relaxing modes are long-wavelength spatial

probability fluctuations, which decay through diffusion.
For many-body systems with few-body interactions, the
connectivity graph is more complicated but is still local in
Fock space, hence suggesting a gapless Lindbladian,
consistent with numerics [16]. The discrepancy between
the local and nonlocal regimes indicates that there must be a
phase transition between them.
In this Letter we identify such phase transitions by

exploring an ensemble of master equations constructed
from power-law random banded matrices (PRBMs).
PRBMs can be regarded as random hopping models in
one dimension, with hopping that falls off as a power α of
the distance between two sites [3,23–25]. They interpolate
between conventional random matrices in the α → 0 limit
and short-range hopping systems with power-law localized
eigenvectors for large α. These models have been studied
extensively in the Hamiltonian case [3], where a localiza-
tion transition occurs at α ¼ 1. Here, we analyze related
ensembles for open systems, whose Hamiltonian and
couplings to a Markovian noise of strength γ are given
by N × N PRBMs with two distinct powers αH and αL. We
find a rich phase diagram, shown in Fig. 1, containing three
dynamical phases: (i) a gapped phase in which the
relaxation rate remains independent of N, (ii) a “hydro-
dynamic” phase where the relaxation rate falls off as a
power law of N and the slowest-relaxing modes are long-
wavelength fluctuations, and (iii) a “Lifshitz” phase where
the relaxation rate falls off logarithmically in N, and the
slowest-relaxing modes are localized perturbations in real
space. Notably, we find that the limits N → ∞ and γ → 0
(or γ → ∞) do not always commute, and finite-N systems
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with given ðαH; αLÞ may exhibit quite different behaviors
for small and large γ. However, we show that in the N → ∞
limit the weak- and strong-decoherence regimes connect
smoothly and any phase transitions as a function of γ (apart
from the appearance of midgap states reported for the pure
RMT case [12]) are avoided due to nonperturbative effects.
Model.—We consider systems described by noisy

dynamics of the form HðtÞ ¼ H þ ξðtÞL, where ξ is a
Gaussian Markovian noise with variance γ. The
HamiltonianH and the jump operator L are N × N random
matrices [26], whose elements in the position basis are
Gijfij. Here, G is a matrix from the Gaussian orthogonal
ensemble and fij ¼ 1=ðδij þ ji − jjαÞ, where the exponent
α generally takes different values, αH and αL, for H and L.
We normalize G such that the variance of the spectrum of
both H and L is 1=2 for all αH,αL. The noise-averaged
dynamics is described by the Lindblad master equation

∂tρ ¼ Lρ≡ −i½H; ρ� þ γðLρL − L2ρ=2 − ρL2=2Þ: ð1Þ

The eigenvalues of the Lindbladian superoperator L
occupy the complex half-plane ReðλÞ ≤ 0 and are either
real or form complex conjugated pairs [12]. The steady
state (λ ¼ 0) of the specified model is always the max-
imally mixed state ρ0 ¼ I=N. The remaining right eigen-
vectors of L are traceless matrices, ρi, i ¼ 1;…; N2 − 1,
that are either Hermitian or form Hermitian conjugated
pairs. A general density matrix can be expanded as ρðtÞ ¼
ρ0 þ

P
N2−1
i¼1 ðaieλitρi þ H:c:Þ and its late-time approach to

ρ0 is governed by the eigenvalue with the smallest negative

real part, −Δ, and its corresponding eigenvector ρ1. (This is
always true in finite systems, but important exceptions exist
in the thermodynamic limit [27–29].) As N → ∞, Δ may
tend to a positive value (i.e., is “gapped”) or approach zero
(“gapless”), and we compute its dependence on αH, αL,
and γ.
Overview of PRBMs.—We will invoke the spectral

properties of PRBMs and thus briefly review their proper-
ties [3,30]. (i) For α < 1=2, PRBMs are akin to structure-
less random matrices: their eigenstates are random vectors
and their eigenvalues follow a Wigner semicircle distribu-
tion. (ii) For 1=2 < α < 1, almost all eigenstates jvi are
extended, as revealed by their inverse participation ratio
(IPR) I ¼ P

N
i¼1 jvij4 that vanishes in the large-N limit.

However, they typically exhibit sparse spatial structure
spanning only a fraction of the sites. Concomitantly, the
eigenvalue distribution becomes unbound due to Gaussian
tails [25] consisting of states that are localized around
potential extremes and are unable to find any resonances
within the system. These tail states are subextensive in
number but, as we will show, may dominate the late-time
dynamics. (iii) For α > 1, all eigenstates are localized with
power-law decay jvij ∼ 1=iα.
Rate equations: Small γ.—We begin by discussing the

limit of small or large γ at finite N, where the analysis is
facilitated by the ability to perturbatively eliminate all but
N of the eigenvectors of L. As noted above, the limits
γ → 0;∞ and N → ∞ do not always commute and we will
address this issue later. Consider first the case γ ¼ 0. Here,
the eigenvectors of L are jijÞ≡ jiihjj with eigenvalues
iðEi − EjÞ, where Hjii ¼ Eijii. The N eigenvectors of the
form jiiÞ have zero eigenvalue, i.e., are steady states.
Following the convention in the NMR literature we dub
them “H populations” and the other NðN − 1Þ states “H
coherences.” At first order in γ the noise does not couple
populations and coherences, and one can write down
classical rate equations for the populations [12],
∂tjiiÞ ¼

P
j AijjjjÞ, where

Aij ¼ γðjhijLjjij2 − δijhijL2jjiÞ: ð2Þ

When αH < 1=2, the eigenbasis of H is effectively
random, leading to rates Aij that are approximately chi-
squared distributed with a mean and a standard deviation
that scale as γ=N. We have previously shown that such
conditions lead to a gap Δ ¼ γ=2 [12]. Conversely, when
αH > 1 the H eigenvectors are localized. Analytical
progress can be made by modeling them as a set of
power-law envelopes centered on each of the N sites
(ignoring their mutual orthogonality) and by averaging
Aij over the statistics of L. Within this “mean-field”
approximation A is similar to a Hamiltonian whose hopping
amplitudes between sites i, j vary as ji − jj−2α0 , where
α0 ≡minðαH; αLÞ, and whose rows sum up to zero [30].
The mean-field analysis predicts a gap when α0 < 1=2, a

FIG. 1. (a) The Lindbladian spectral gap as a function of the
exponents αH , αL at weak decoherence γ ¼ 0.2 and N ¼ 100.
The solid lines mark the N → ∞ phase transitions between
gapped, hydrodynamic, and Lifshitz phases. The dashed line
marks a change in the populations’ content of the slowest
decaying eigenvector. (b) N dependence of the gap for selected
values of ðαH; αLÞ indicated by colored symbols in (a). (c)–
(d) Similar data at strong decoherence γ ¼ 10.
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superdiffusive relaxation for 1=2 < α0 < 3=2 with a lowest
eigenvalue that vanishes as N1−2α0 , and diffusive dynamics,
where this eigenvalue vanishes as N−2 for α0 > 3=2.
Solving the rate equations numerically yields a qualita-
tively similar behavior with a gapped phase for αL < 1=2
and a gapless phase for αL > 1=2, albeit with a slower
decay of the lowest eigenvalue with N as compared to the
mean-field prediction [30]. For 1=2 ≤ αH ≤ 1 the typical
eigenstates of H do not have a simple description. Our
numerical results indicate a gapped phase for αL < 1=2 and
a “weakly gapless” behavior for αL > 1=2, where ρ1 is a
localized population in the Lifshitz tail of H whose
eigenvalue slowly decreases with N [30].
Rate equations: Large γ.—A similar analysis can be

carried out at large γ [12]. Here, one begins by diagonal-
izing the dissipative part of L, finding eigenvectors of the
form jμνÞ ¼ jμihνj, with eigenvalues −ðγ=2Þðκμ − κνÞ2,
where Ljμi ¼ κμjμi. Again, there are N eigenvectors
with zero eigenvalue corresponding to “L populations.”
Eliminating their coupling to the remaining NðN − 1Þ “L
coherences” to second-order in H leads to rate equations
∂tjμμÞ ¼

P
ν AμνjννÞ with transition rates

Aμν ¼
4

γ

jhμjHjνij2ðκμ − κνÞ2
ðκμ − κνÞ4 þ ð2=γÞ2ðhμjHjμi − hνjHjνiÞ2 : ð3Þ

Probability conservation enforces Aμμ ¼ −
P

ν≠μ Aμν. In
the strict large-γ limit at finite N, one would ignore the
γ-dependent part of the denominator. However, this term
regularizes the effective dynamics for all finite γ. Hence, we
discuss Eq. (3) below and contrast it with the unregularized
form in the Supplemental Material [30].
When αL < 1=2, the spectrum of L is bounded with

extended states, causing H to act as a featureless random
perturbation between L populations. Consequently, one can
coarse-grain Eq. (3) in κ space and replace jhμjHjνij2 by its
average to find a gap Δ ≃ 2=γ [12,30]. For 1=2 < αL < 1,
most of the L eigenvectors are still delocalized. However,
typical realizations of L also have spatially localized tail
states whose eigenvalues are far from the rest of the
spectrum of L. The matrix elements out of these tail states
are suppressed according to Eq. (3). As a rough estimate, in
a sample of size N the extremal eigenvalue resides
approximately

ffiffiffiffiffiffiffiffiffiffiffi
logN

p
away from the bulk of the spectrum

[30]. ρ1 is localized on this extremal state, and the gap
closes logarithmically in system size. When αL > 1 the
eigenvectors of L are localized and its spectrum is
unbounded. Consider the case αL ¼ ∞, where they are
roughly localized on sites and the dominant dependence of
Aμν comes from jhμjHjνij2, scaling as jμ − νj−2αH . For
αH < 1=2, these elements fluctuate sufficiently weakly that
one can still coarse grain [30]. Since the L spectrum is
unbounded, tail states set a logarithmically decaying gap.
For αH > 1=2 the effective hopping between L populations

is local, leading to hydrodynamic behavior with extended
eigenvectors and a gap that decays as a power law with N.
Numerically, we find that this behavior persists down to
αL ¼ 3=2, where the gap is again set by tail states [30].
Comparison of small and large γ.—We briefly summa-

rize our findings using the rate equations. (a) When
αL < 1=2, a gapped phase is predicted for all γ.
(b) When αH, αL are both sufficiently large (αH > 1,
αL > 3=2), a gapless phase is predicted for all γ.
(c) Elsewhere, the rate equations for small and large γ
yield incompatible results. For αH < 1=2, αL > 1=2 they
suggest a gap-closing transition at finite γ, and in the
remaining part of the ðαH; αLÞ plane they disagree on the
way the gap closes with increasing N. As we will argue,
these discrepancies are absent for sufficiently large N.
Numerical investigation of L.—We have contrasted the

above predictions against the spectrum of the full
Lindbladian (which is an N2 × N2 matrix) for a relatively
small system size N ¼ 100, where a fine sweep across
parameter space is feasible. We then examined larger
systems of up to N ¼ 1600 at selected points in the
ðαH; αLÞ plane. At these sizes, we do not have access to
the full spectrum of L but we can find the leading two
eigenvalues and their corresponding eigenvectors by the
power method. The resulting phase diagrams (Fig. 1) match
our expectations from the rate equations in regimes (a) and
(b) specified above. In regime (c), we find behavior that lies
beyond the rate equations.
A more sensitive probe than the gap is the nature of ρ1. In

the gapless regime we find that for small γ and N it follows
the prediction of the rate equations and is extended both in
the position andH eigenbases as long as αH > 1, while it is
localized in both bases for 1 > αH > 1=2 [30]. However, as
N increases ρ1 becomes delocalized in the entire αH > 1=2
gapless regime. One can characterize the failure of the rate
equations by the fraction of the operator norm of ρ1 that lies
in the populations subspace. This is representing how well
a population-only approximation (i.e., classical rate equa-
tion) can capture ρ1. As shown by Supplemental Material,
Fig. 4 [30] the overlap with the populations is large for
αH > 1, but diminishes with N for αH < 1. Intuitively, one
expects such behavior if ρ1 is hydrodynamic at large N,
with a population that is modulated in real space. Since the
eigenstates of H are delocalized when αH < 1, the projec-
tors onto them miss the real-space structure. By contrast,
for αH > 1 the eigenstates are localized, so local popula-
tions in energy space are a good proxy for local populations
in real space.
We now support this intuition by analyzing the case

γ ≪ 1, αL ¼ ∞, 1=2 < αH < 1, corresponding to a system
subject to local noise and a Hamiltonian with power-law
hopping and random on-site potentials. Consider a wave
packet initially localized in real space. In the clean system,
it hybridizes via coherent tunneling with states at all dis-
tance scales R, with a Rabi frequency ∼R−αH. However,
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local noise of strength γ sets a timescale γ−1 and a length
scale Rγ ∼ γ−1=αH beyond which coherent tunneling is
disrupted. For R > Rγ transport is governed by incoherent
hopping processes with a rate that is set by Fermi’s golden
rule and scales as 1=R2αH . Since 2αH > 1, incoherent
hopping is local in this regime and the slow modes are
accordingly hydrodynamic in real space. The eigenstates of
H are the wrong basis because they are formed by delicate
tunneling resonances that any amount of decoherence can
disrupt. Evidently this argument extends to general αL > 1,
and an exactly parallel argument can be made for large γ
and 1=2 < αL < 1.
ρ1 remains delocalized for αH > 1=2 also in the strong-

decoherence thermodynamic limit. This is apparent from
Fig. 2, showing its IPR in the L-population subspace
IPRL ¼ P

κ ρ
4
κκ=ð

P
κ ρ

2
κκÞ2, where ρκκ are its components

within this subspace. Conforming to the prediction of the
rate equations, the crossover regime αH > 1=2, 1 > αL >
1=2 exhibits an eigenvector that is still largely concentrated
on a population of a spatially localized L-tail state at small
N. However, the IPRL diminishes with N, and ρ1 becomes
modulated in real space. Hence, for similar reasons to those
outlined above, its projection onto the L populations also
vanishes, see Fig. 2. In contrast, the IPRL increases with N
when αH < 1=2, αL > 1=2. We have confirmed that this is
a result of ρ1 becoming more concentrated on a population
of a localized L-tail state. Thus, we conclude that the range
αH < 1=2, αL > 1=2 hosts a thermodynamic Lifshitz phase
whose gap vanishes very slowly, as shown by Fig. 1.

Both the perturbative rate-equation analysis and the avai-
lable numerical data point at a transition from a small-γ
gapped phase to a large-γ weakly gapless Lifshitz phase
when αH < 1=2 and αL > 1=2. Nevertheless, we argue that
the N → ∞ spectrum in this range is weakly gapless for all
γ. The key observation is that the spectrum ofH is bounded
whereas that of L is unbounded. Hence, in the large-N
limit, the largest energy scale is associated with the Lifshitz
tail states of L and grows as

ffiffiffiffiffiffiffiffiffiffiffi
logN

p
. Consequently, as

N → ∞ the noise cannot be treated perturbatively. Rather,
the tail states must be diagonalized out first, and only then
can one apply the large-γ perturbation theory to treat their
mixing with other states via H. The resulting gap dimin-
ishes as 1=ðγ logNÞ but is challenging to detect: since the
fixed-N, γ → 0 perturbation theory yields a gap of order γ
the tail-state eigenvector extends below it only when
N>expð1=γ2Þ. For small γ this regime is numerically
inaccessible. Instead, the Supplemental Material demon-
strates small-γ Lifshitz behavior using a model whose
density of L eigenvalues decays only as κ−4.
Discussion.—Our Letter focused on the spectral gap Δ.

To make contact with the dynamics of local observables we
have followed the evolution of an initial state with
ρij ¼ ðδij − δi1δj1Þ=ðN − 1Þ. We observe an asymptotic
exponential approach of every ρii to the steady state value
1=N. The relaxation time is Δ−1 at all sites i, but the onset
time of the asymptotic approach varies with i and depends
on the overlap ðρ1Þii with the slowest mode [30]. At shorter
times, the relaxation is faster, due to more rapidly decaying
eigenstates. These points are demonstrated by Fig. 3 and
the Supplemental Material [30]. In terms of the natural
scale Δ−1 the asymptotic approach begins earliest in the
hydrodynamic phase, then in the gapped phase and finally
in the Lifshitz phase, where most sites have only algebrai-
cally small overlap with ρ1.
Often, when classical noise controls the experiment, it

couples to a single collective variable, e.g., the dipole
moment of a chaotic quantum dot. Although we focused on
this case, a more general setting involves multiple
decoherence channels with their associated jump operators.

FIG. 2. (a) Overlap between ρ1 and the L populations at strong
decoherence γ ¼ 10 and N ¼ 100. (b) N dependence of the
overlap along the cut shown in (a). L coherences are essential to
describe the state when αH > 1=2 and 1 > αL > 1=2. (c) The IPR
of ρ1 in the L eigenbasis. (d) N dependence of the IPR for the
ðαH; αLÞ values indicated in (c). ρ1 is dominated by a tail L
population when αH < 1=2, αL > 1=2.

FIG. 3. (a) The relative difference between the spatial average
of the relaxation rate τ−1 of local observables and Δ for γ ¼ 10,
αL ¼ 1.5, and N ¼ 400. The dotted, dashed, and solid lines are
based on τ−1 extracted by fitting the relaxation over the range
t ¼ 3–6, 6–9, and 9–12Δ−1, respectively. The inset shows the
standard deviation of the relative difference. (b) The same
quantities as a function of αL for αH ¼ 1.5.
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In the Supplemental Material we extend our treatment to
systems with several PRBM jump operators with exponents
αLk

[30]. Let us briefly quote the results. When α̃L ¼
minðαLk

Þ < 1=2, the spectrum is gapped, otherwise it is gap-
less. Aweakly gapless Lifshitz phase occurs when α̃L > 1=2
and αH < 1=2. Finally, when all exponents exceed 1=2 we
predict a hydrodynamic regime.
Our analysis found three distinct phases as a function of

the decay exponents ðαH; αLÞ, but no phase transitions as a
function of the decoherence strength γ. Our analysis is
consistent with the possibility of transitions between
gapped phases, as in Ref. [12]; indeed, we expect such
transitions everywhere in the gapped phase αL < 1=2.
A natural question is whether the transitions we find

exhibit nontrivial critical phenomena. While we have not
addressed these in detail, our results shed some light on the
matter. The transition from gapped to hydrodynamic rela-
xation as one tunes αL at fixed αH ≫ 1 and small γ is a
transition purely in the decay rates of the hydrodynamic
modes: the low-lying eigenvectors themselves evolve
smoothly with αL, and show no signs of a diverging length
scale. The extended modes do change across the same
transition at large γ, and further study is required. The αH-
tuned transition from Lifshitz to hydrodynamic relaxation
at fixed αL ≫ 1 appears rather simple: it is a level crossing
between the localized Lifshitz tail state and the hydro-
dynamic mode, and as such shares some similarities with
other spectral “first-order” transitions [31]. Finally, the
transition between gapped and Lifshitz relaxation at αH <
1=2 as one tunes αL through 1=2 is a nontrivial critical
point, associated with the emergence of tails in the density
of states of PRBMs [3]. This transition is a particularly
promising candidate for experimental studies in ion traps,
which allow us to realize power-law couplings with tunable
exponents [32].
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