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We present a new route to ergodicity breaking via Hilbert space fragmentation that displays an
unprecedented level of robustness. Our construction relies on a single emergent (prethermal) conservation
law. In the limit when the conservation law is exact, we prove the emergence of Hilbert space fragmentation
with an exponential number of frozen configurations. These configurations are low-entanglement states in
the middle of the energy spectrum and therefore constitute examples of quantum many-body scars. We
further prove that every frozen configuration is absolutely stable to arbitrary perturbations, to all finite
orders in perturbation theory. In contrast to previous constructions, our proof is not limited to symmetric
perturbations, or to perturbations with compact support, but also applies to perturbations with long-range
tails, and even to arbitrary geometrically nonlocal k-body perturbations, as long as k=L → 0 in the
thermodynamic limit, where L is linear system size. Additionally, we identify one-form U(1) charges
characterizing some nonfrozen sectors, and discuss the dynamics starting from typical initial conditions,
which we argue is best interpreted in terms of the magnetohydrodynamics of the emergent one-form
symmetry.

DOI: 10.1103/PhysRevLett.132.040401

When do quantum many-body systems break ergodicity,
and fail to reach thermal equilibrium under their own
dynamics? “Traditional” answers have included integrable [1]
and many-body localized [2,3] systems, both of which
have extensively many conserved quantities. A more recent
answer involves many-body scars [4–7], whereby typical
initial conditions thermalize, but there exist special (low-
entanglement) initial conditions that do not. More recently
still, it was observed that the interplay of (finitely many)
conservation laws can break ergodicity [8], a phenomenon
that was later understood as arising from Hilbert space
fragmentation (also known as shattering) [9,10], whereby
the unitary time evolution matrix block diagonalizes into
exponentially many subsectors, with the dynamics unable to
connect different subsectors [11–17].
An important open question involves how robust ergo-

dicity breaking is to perturbations. For integrable systems,
and most systems hosting scars, it is not known if there is
any class of perturbations to which the phenomenon is
robust. Many-body localization has a proof of robustness
[18], but the proof is subtle, only works for short-range
interacting systems (with at most exponential tails) in one
spatial dimension, and even there has recently been called
into question [19]. In contrast, the best-studied route to
Hilbert space fragmentation (charge and dipole conserva-
tion) has a simple proof of robustness [9] that applies in
arbitrary dimensions, but only to symmetry-respecting
perturbations with bounded spatial range. It is also known,
however, that if conservation laws are implemented emer-
gently, as prethermal conservation laws [20], then the

requirement that perturbations respect the corresponding
symmetries gets lifted. Thus, it is known how to obtain
(prethermal) Hilbert space fragmentation that is robust to
perturbations with bounded spatial range. There are, how-
ever, two important shortcomings of this construction:
(i) typical frozen states are given dynamics at some finite
order in perturbation theory, (ii) if the restriction of
bounded spatial range is removed, there exist simple
four-body perturbations that melt frozen configurations.
In this Letter, we present a new route to ergodicity

breaking via Hilbert space fragmentation that is provably
robust to any perturbations, without the requirement that
perturbations have bounded spatial range, and whose
frozen configurations are all absolutely stable [21] to all
orders in perturbation theory. Similarly to Refs. [9,16,17],
we rely on prethermal (i.e., “emergent”) implementation of
conservation laws to obtain exponentially many “frozen”
configurations. These correspond to low-entanglement
states in the middle of the spectrum, such that they are
examples of many-body scars. Our proofs apply to fully
geometrically nonlocal perturbations, as long as the per-
turbations are k body (i.e., act on no more than k qubits)
with k=L → 0 in the thermodynamic limit, where L is
linear system size. This includes physically realistic long-
range interactions with power-law tails. As such, our
construction produces ergodicity breaking with an unprec-
edented degree of robustness, and opens a new direction for
the study of nonergodic quantum dynamics. The phenome-
non, moreover, arises in a system with a “generalized
Rydberg” constraint, which could plausibly be accessed in

PHYSICAL REVIEW LETTERS 132, 040401 (2024)

0031-9007=24=132(4)=040401(6) 040401-1 © 2024 American Physical Society

https://orcid.org/0000-0002-3150-0169
https://orcid.org/0000-0002-5391-7483
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.040401&domain=pdf&date_stamp=2024-01-23
https://doi.org/10.1103/PhysRevLett.132.040401
https://doi.org/10.1103/PhysRevLett.132.040401
https://doi.org/10.1103/PhysRevLett.132.040401
https://doi.org/10.1103/PhysRevLett.132.040401


near-term experiments with synthetic quantum matter. If
the constraint is imposed as a hard constraint, as is usual in
the study of scars [4–7], then the ergodicity breaking is
exact.
Model.—We consider a model of spin-1=2 particles on

an L × L two-dimensional square lattice. We take periodic
boundary conditions in both directions and assume that L is
a multiple of 4 [22]. We use the notation X, Z for the Pauli
X and Z operators, and denote the basis of Z by the states
j0i; j1i. The spins interact according to the following
Hamiltonian,

HðhÞ ¼ −J
X

ijkl∈□

CZijCZjkCZklCZil − h
X

i

Xi: ð1Þ

Therein, ijkl∈□ represents a set of four spins around a
given plaquette (face) of the lattice, ordered clockwise and
J > 0. The operator CZ ¼ 1 − 2j11ih11j is the two-body
controlled-Z operator, which is diagonal in the Z basis, and
gives a minus sign when the two spins are both in the state
j1i. Let us denote CZp ¼ CZijCZjkCZklCZil for i, j, k, l
being the four sites around plaquette p. The CZp inter-
action can be viewed as a generalized Rydberg inter-
action. In atomic Rydberg arrays, two neighboring atoms
experience a strong energy shift when they are both in the
excited state (j1i) [23]. This phenomenon, known as
the Rydberg blockade, is equivalent to an interaction by
the termCZij for each neighboring pair i, j, up to a constant
shift. In contrast, CZp gives an energy shift only if there is
an odd number of neighboring sites in the excited state
(“neighboring 1’s”) around a given plaquette. Therefore,

we have a four-spin parity-dependent interaction which is
similar to, but distinct from, the usual two-spin Rydberg
interaction. This interaction can equivalently be expres-
sed in terms of two- and four-body Ising interactions,
CZp ¼ 1

2
ð1þ ZiZk þ ZjZl − ZiZjZkZlÞ.

The Hamiltonian in Eq. (1) has a Z2 × Z2 symmetry
generated by flipping all spins on the even or odd sublattice
of the square lattice [a site i ¼ ðx; yÞ is on the even (odd)
sublattice if xþ y is even (odd)]. Because of this, the
interaction CZp depends only on the domain wall variables
of the two sublattices. We therefore need only keep track of
these domain wall variables [Fig. 1(a)]. The domain walls
form two independent sets of closed loops on the two
independent sublattices, and the two species of domain wall
can intersect with one another on the plaquettes. On each
plaquette, there can be no domain wall, a single domain
wall between either the odd or the even sites, or a domain
wall between both odd and even sites. This gives an
effective four-dimensional Hilbert space on each plaquette
[Fig. 1(a)]. The interaction CZp acts diagonally on this
Hilbert space and gives a factor of −1 when there are two
domain walls present, i.e., when there is a crossing of loops,
and otherwise does nothing. The spin-flip term ∝

P
i Xi

acts in this dual Hilbert space by fluctuating closed-loop
configurations locally. This dual picture will be very helpful
to visualize the frozen states that we describe in the next
section, and to understand their robustness.
Exponentially many perfect scars.—We now consider

the limit J ≫ h. In this limit, the number of domain wall
intersections becomes an emergent U(1) conserved quan-
tity [24], up to a prethermal timescale exponentially [25]

FIG. 1. (a) Configurations of spins around a plaquette grouped by their image under the duality mapping. The blue (red) lines indicate
domain walls of the even (odd) sublattice. Forbidden configurations of spins with CZp ¼ −1, corresponding to intersecting loops, are
marked by the dotted box. (b) Configurations of spins are displayed with their corresponding image under the duality mapping. The
upper configuration is allowed in the restricted Hilbert space while the lower is not as it contains intersecting loops. (c) Two examples of
the scar states, which appear as a foliation of parallel loops in the dual picture. (d) Two examples of states that can be reached by the
upper state in (c) by simultaneously flipping all spins in the dashed boxes. All configurations in (b), (c), and (d) represent parts of an
infinite system.
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long in J=h [20]. We work in the emergent symmetry sector
with no intersections, i.e.,CZp ¼ 1 for all plaquettes p. This
symmetry sector is spanned by product states that have an
even number of pairs of neighboring 1’s around every
plaquette. Allowed and disallowed configurations are shown
in Figs. 1(a) and 1(b). This symmetry sector is exponentially
large in system volume; at the very least, if we put all spins
on the even sublattice in the state j0i, the state will be in the
ground space regardless of the configuration of the odd
sublattice, since there will be no neighboring 1’s. This means
the symmetry sector is capable of hosting volume-law
entangled eigenstates. A more quantitative estimate of the
sector size is provided by a Pauling estimate [29]. For a given
plaquette, 12 of the possible 16 states are permitted by the
no-crossing constraint. Once the constraints on adjacent
plaquettes are also taken into account (on average), one finds
N0∼2L

2ð12=16ÞL2 ¼ð3=2ÞL2

states. This scaling is in good
agreement with exact numerical enumeration of states [30].
Let us treatCZp ¼ 1 as a hardcore constraint that defines

a restricted Hilbert space. This approximation becomes
asymptotically exact in the prethermal limit h=J → 0. To
lowest order in perturbation theory, the effect of the
magnetic field projected onto this restricted space is

H0 ¼ −h
X

i

XiðP0000
i þ P1111

i Þ; ð2Þ

where P0000
i projects the four sites neighboring i onto the

state j0i, and similarly for P1111
i . This effective Hamiltonian

strongly resembles that of PXP models [6,36–39], which
arise as effective models in the presence of the Rydberg
blockade. PXP models have dynamics given by constrained
spin flips, where a spin can only flip if all of its neighbors
are in the state j0i. Here, we additionally allow the spin flip
if all neighboring spins are in the state j1i. This is a
consequence of our parity-sensitive interaction in Eq. (1),
since, while the latter spin flip creates new neighboring 1’s
(which is not allowed in the conventional Rydberg setup), it
conserves the parity of neighboring 1’s around each
plaquette. As discussed in Ref. [40], the same lowest-order
effective Hamiltonian H0 can be obtained using conven-
tional Rydberg interactions with more than one degree of
freedom per lattice site [41].
The PXP models are prototypical examples of models

that host quantum many-body scars [42–44]. Similarly, the
effective HamiltonianH0 (2) also has scars. We remark that
the eigenstates of H0 are related to those of H via a unitary
basis transformation (the Schrieffer-Wolff transformation).
We work in the basis of H0, since here the scars are simple
product states where each site has some neighbors in the
state j0i and some in the state j1i [45]. Two such states are
pictured in Fig. 1(c). Because no spins are flippable, these
states are energy 0 eigenstates ofH0. SinceH0 is mapped to
−H0 by the global application of Z, energy 0 is exactly in
the middle of the spectrum of H0 [46]. Despite this, these

states have no entanglement, as they are simply product
states, which violates the expectation that states in the
middle of the spectrum should have large entanglement.
Therefore, we may call them examples of many-body scars.
In the dual picture of domain walls, these states look like
“foliations” of parallel noncontractible loops, as shown in
Fig. 1(c). Because the loops are densely packed, no loop
can fluctuate without creating intersections with its neigh-
boring loops, which would violate our emergent (prether-
mal) conservation law.
The states pictured in Fig. 1(c) are not the only scar states

in this model. In fact, the number of orthogonal scar states
grows exponentially in linear system size L. The other scar
states can be constructed in the following way. Observe that
the states pictured in Fig. 1(c) consist of the repeated
pattern “0011” along every row. In the first row, we can
choose to shift this pattern in one of four ways. On each
subsequent row, we can independently choose to shift the
pattern left or right by one site with respect to the previous
row. This generates 2Lþ1 states. Rotating the lattice by 90°
gives 2Lþ1 additional states, but they are not all new states.
Taking the repeated states into account, there are 2Lþ2 − 8
scar states in total. The graphical construction makes it
clear that these states are all energy 0 eigenstates ofH0, and
that they are all in the CZp ¼ 1 sector. In the dual picture,
the different scar states come from different ways of putting
kinks into the foliated loop pattern.
Absolute robustness of the scar states.—We have shown

that, to the lowest order in perturbation theory, we can
construct ∼2L scar states that have no entanglement and lie
in the middle of the energy spectrum. Now, we consider
higher orders in perturbation theory. To do this, we need to
consider the possibility of a sequence of spin flips that
temporarily violates the CZp ¼ 1 constraint before return-
ing to an allowed state. The dual picture makes it clear that
such a process does not exist to any finite order in
perturbation theory. This is because every fluctuation of
loops that is contained within a region with finite radius
will inevitably create loop intersections within that region,
or its boundary, due to the dense packing of loops. The only
process that is allowed is one which pairwise annihilates
two loops, or one which puts a kink in all loops across the
entire system, see Fig. 1(d). We remark that the former
process maps the scar state to a state which can now be
acted on by local spin flips [upper state in Fig. 1(d)], while
the latter maps to another scar state [lower state in
Fig. 1(d)]. Both processes require simultaneously flipping
a number of spins that is proportional to the linear system
size L, so they only occur at an order of perturbation theory
that is also proportional to L. Therefore, we say that the scar
states pictured in Fig. 1(c) are robust to all finite orders in
perturbation theory. We give a more rigorous argument of
this robustness in Supplemental Material (SM) [30].
Remarkably, these scar states are also robust to arbitrary

perturbations of the Hamiltonian. That is to say, in the
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thermodynamic limit, the scar states will remain eigenstates
even in the presence of arbitrary perturbations V, in the
prethermal limit h̃=J → 0, where h̃ is the generalized
perturbation strength. We start by noting that, in the
prethermal limit, the perturbation must be projected into
the symmetry sector with no domain wall intersections. We
have already shown that the scar states are an energy 0
eigenstate of X or finite product of X operators, after such
projection. On the other hand, since the scar states are
product states in the Z basis, they will be eigenstates of any
perturbation consisting of Z operators. We note that, unlike
the X-type perturbations, the Z-type perturbations will shift
the energy of the scar states away from 0. Since V can
always be decomposed into products of X’s, Z’s, we see
that the scars are indeed eigenstates of V after projection
onto the prethermal symmetry sector. We emphasize that
we have not required the perturbations to be symmetry
restricted, or to have compact support—our proof carries
through unchanged for perturbations that have long-range
tails, and even for perturbations that are fully geometrically
nonlocal, as long as they are k body with k=L → 0 in the
thermodynamic limit.
We now address the convergence of perturbation theory.

We note that −
P

pCZp has integer spectrum (we are
working in the ground space thereof), so we can directly
apply the rigorous theory of prethermalization [20,26–28].
This theory establishes that, while perturbation theory does
not converge, the breakdown of perturbation theory in our
model (as witnessed by local observables) only manifests
beyond a prethermal timescale exponentially long in J=h.
We contrast this with PXP-type models, where the analo-
gous timescale is only polynomial in inverse perturbation
strength [47].
Intermediate Krylov sectors.—Now, we investigate the

existence of larger isolated sectors of Hilbert space. Instead
of a dense packing of winding loops [Figs. 1(c) and 1(d)],
consider the state depicted in the left panel of Fig. 2
which contains four adjacent noncontractible domain wall
loops of alternating color surrounded by the domain wall
vacuum. Under local dynamics, these loops can fluctuate,
subject to the no-crossing constraint, and contractible loops
can be created or destroyed from or into the vacuum, as
depicted in the right panel of Fig. 2. Crucially, the no-
crossing constraint implies that the number of noncontrac-
tible loops of alternating color remains an emergent
constant of motion, since two loops of the same color
cannot be pairwise annihilated without creating intersec-
tions with the loop in between them. More generally,
intermediate sectors of Hilbert space can arise from some
number of noncontractible loops that wind around any one
of the horizontal, vertical, diagonal, or antidiagonal direc-
tions of the torus.
These intermediate sectors of Hilbert space can be

understood as symmetry sectors of a U(1) 1-form symmetry

that emerges due to theCZp ¼ 1 constraint. To identify this
symmetry, we refine the duality mapping from spins to
loops to give the loops a well-defined orientation [30].
Examples of oriented loop patterns are pictured in Fig. 2.
For any closed and oriented path P between plaquette
centers, we can then compute the net flux QP of loops
crossing P, where a sign convention can be fixed using the
right-hand rule. Any contractible loop will necessarily
intersect P twice (in opposite directions) and therefore
will not contribute to the net flux. However, if P winds
around a noncontractible path on the torus, it is possible for
a noncontractible loop to intersect it only once. In parti-
cular, if we define Qx and Qy as the net flux across a
noncontractible path along column x and row y, as depicted
in Fig. 2, then jQxj (jQyj) counts the number of loops that
wind around the horizontal (vertical) direction of the torus.
Importantly, a pair of adjacent noncontractible loops of the
same color have opposite orientations. Therefore, only the
loops of alternating color, which cannot be annihilated by
local dynamics without introducing crossings, will con-
tribute to Qx=y. If a domain wall loop winds diagonally
around the torus, it will contribute to bothQx andQy. Since
QP ¼ 0 for any contractible path P, the paths along which
Qx=y are evaluated can be arbitrarily locally deformed
without changing their value, hence they should be con-
sidered 1-form symmetry charges.
Geometrically, it is clear that local fluctuations in the

domain walls cannot change Qx=y, so they are constants of
motion. Small-scale numerical studies of the connectivity
of Hilbert space under the dynamics of H0 support the
claim that the magnitude and sign ofQx=y uniquely label all
intermediate sectors of Hilbert space, where domain walls
are not fully packed [30]. These sectors can thus be viewed
as symmetry sectors of the emergent one-form symmetry.
However the scar states cannot be viewed in this way, as
there are indeed only ∼L different values of Qx=y, whereas
the number of scar states is ∼ expðLÞ. Therefore, the U(1)

FIG. 2. A configuration of spins belonging to one of the
“intermediate” sectors. Here, we take an 8 × 8 lattice with
periodic boundary conditions indicated by the gray numbers.
The dashed lines indicate rows and columns along which Qy and
Qx, respectively, are evaluated. In both cases, we have Qy ¼ 4,
Qx ¼ 0, implying these diagrams are in the same sector and are
therefore related by a series of local moves.
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1-form symmetry sectors are not sufficient to uniquely label
all the fragments of Hilbert space. Finally, we note that this
U(1) 1-form symmetry is indeed an emergent symmetry in
the CZp ¼ 1 sector, as loop crossings turn out to act as
sources or sinks of oriented flux [30].
Hydrodynamics.—We now discuss dynamics from simple

nonscar initial states. Within the CZp ¼ 1 sector we show
(see SM [30]) that this is well described by magnetohydro-
dynamics of the emergent one-form U(1) symmetry [48].
This analytic expectation may be confirmed using the
automaton Monte Carlo technique [49] and single spin flip
dynamics. Meanwhile, in sectors with intersections (a non-
zero number of CZp ¼ −1) we find that, starting from an
“infinite temperature” initial condition, the long-time limit of
the subsequent dynamics is characterized by isotropic
diffusion of the intersections, which (we recall) are con-
served up to the prethermal timescale [30].
Conclusions.—We have shown how a “generalized

Rydberg constraint” can lead to an exponential number
of frozen configurations (scars) which are provably robust
to arbitrary k-local perturbations. Our results provide a new
avenue for the design of ergodicity breaking models, which
may function as robust memories, and may also be
accessible in near-term quantum simulators [40]. Most
broadly, they may prompt a reevaluation of the necessary
desiderata for ergodicity breaking.
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