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We characterize the full spatiotemporal gait of populations of swimming Escherichia coli using renewal
processes to analyze the measurements of intermediate scattering functions. This allows us to demonstrate
quantitatively how the persistence length of an engineered strain can be controlled by a chemical inducer
and to report a controlled transition from perpetual tumbling to smooth swimming. For wild-type E. coli,
we measure simultaneously the microscopic motility parameters and the large-scale effective diffusivity,
hence quantitatively bridging for the first time small-scale directed swimming and macroscopic diffusion.
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Swimming is key for many microorganisms to survive
[1–8]. Such “active matter” is necessarily far from thermal
equilibrium [9–12] and displays peculiar transport proper-
ties, which enable foraging [13] and escaping from
harm [14]. The flagellated bacterium Escherichia coli is
a model system for active matter experiments [3,15–21].
Much is known about its genetics, biochemistry, and
ultrastructure, but relating this knowledge to the emerging
phenotype, for instance to predict the three-dimensional
(3D) pattern of locomotion (or gait) of a swimming
population, remains a challenge.
The bacterium’s “run-and-tumble” (RT) dynamics [2]

alternates between persistent motion along the cell’s axis
and sudden changes of direction.While themotionof isolated
flagella has been studied in detail using in vitro single-motor
experiments [22,23], a quantitative characterizationof the full

3D gait of swimming populations ofmultiflagellated bacteria
has been out of reach so far. This stems, in particular, from the
need for measurements over length scales ranging from the
order of the short-time runs (∼1–10 μm) to far beyond the
persistence length (≳102 μm). Assuming exponentially dis-
tributed run and tumble durations, the RT dynamics is
predicted to lead to a large-scale diffusion [2,24–26], but
this claim has seldom been demonstrated experimentally,
and the underlying assumptions have recently been ques-
tioned [22,27]. The accurate characterization of RT dynamics
will therefore fill an important gap.
At the same time, while many aspects of the motility

of E. coli have been brought under direct experimental
control [2,4,18,28–35], including the ability to regulate its
run speed by light [36,37], there is currently only limited
scope to fine-tune its overall gait compared to synthetic
swimmers [38–43] because the bacterium’s tumble dynam-
ics is difficult to control independently. The aforemen-
tioned lack of good methods to quantify its RT dynamics
contributes to these difficulties, which in turn limits the use
of E. coli as a model organism for fundamental active
matter research.
In this Letter, we report a full characterization of the 3D

gait of E. coli, which enables us to demonstrate how the RT
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dynamics of an engineered strain can be tuned from
perpetual tumbling to smooth swimming as the concen-
tration of a chemical inducer is varied. These cells can be
used in future work under conditions in which their
persistence length can be predicted a priori once experi-
mental conditions are specified.
We characterize a bacterium’s displacement ΔrðτÞ at lag

time τ in Fourier space using the intermediate scattering
function (ISF):

fðk; τÞ ¼ �
e−ik·ΔrðτÞ

�
: ð1Þ

Analyzing the ISF with a renewal theory then allows us to
extract microscopic kinetic parameters such as the particle
speed and the run and tumble durations. Tomeasure the ISF,
we extend conventional differential dynamic microscopy
(DDM) [44] to collect data encompassing both short-length-
scale directed-swimming and large-length-scale diffusive
regimes. DDM allows us to work in bulk fluid to minimize
hydrodynamic interactions with surfaces [45–49]. It also
circumvents the need of single-cell tracking, which requires
customized Lagrangian [1,2,50,51] or holographic [52,53]
microscopy and is limited by the need for low cell concen-
tration, statistical accuracy, and short trajectories. Our data
confirm to order of magnitude previous measurements of
E. colimotility [1], albeit with a significantly larger run time.
We find large-length-scale diffusive behavior and compare
the extracted diffusivity, Deff , with a theoretical prediction
based on themicroscopicmotility parameters. The predicted
Deff is robust against experimental complexities, but speed
fluctuations contribute ∼10% of its value. Below, we focus
on the biophysical implications of our results while our
methodology is detailed and validated in a companion
paper [54].
Bacterial strain.—We engineered the NZ1 strain by

deleting the cheZ gene in E. coli K12 and adding the
inducible plasmid Plac/ara-1-cheZ [17] [Fig. 1(a)].
Deleting cheZ suppresses the transition from clockwise
to counterclockwise flagella rotation, so that cells tumble
permanently. The plasmid restores expression of cheZ
at a rate dependant on the concentration of Isopropyl

β-d-1-thiogalactopyranoside (IPTG). It is expected, though
never yet confirmed, that tuning the concentration of IPTG
during the growth of this strain allows the control of RT
dynamics [Fig. 1(b)]. Bacteria were cultured and resus-
pended carefully in motility buffer [3] to ensure a very high
final motile fraction, α ≳ 95% [55].
ISF measurement and analysis.—To characterize the

gait of the NZ1 strain at different IPTG concentrations, we
first measured its ISF by DDM. We then fitted it to
the calculated ISF of a well-established model of RT
bacteria [1,25,60–62] that is modified to account for
recently observed intrinsic fluctuations of the propulsion
speed [63]. In this model, bacteria run in quasistraight lines
at speed v until they enter a tumbling phase, at rate τ−1R ,
during which they fully randomize their orientations. They
resume swimming at rate τ−1T with a new swim speed,
sampled from a Schulz distribution pðvÞ characterized by a
mean velocity v̄ and a standard deviation σv [44]. (For an
alternative way to account for swimming-speed fluctua-
tions, see Ref. [54].) In addition, cells diffuse translation-
ally with diffusivity D during both run and tumble phases.
There is also a fraction 1 − α of nonmotile cells that
undergo Brownian motion only, also with diffusivity
D [64]. The ISF for a noninteracting E. coli suspension
predicted by this model reads

fðk; τÞ ¼ αfRTðk; τÞ þ ð1 − αÞe−Dk2τ; ð2Þ

where fRTðk; τÞ is the ISF of RT bacteria [54]. Measuring
this ISF for a wide range of k and τ values then allows

(a) low IPTG high IPTG

tumbling swimming

(b)

FIG. 1. Engineered strain NZ1. (a) Scheme of the regulation:
cheZ expression driven by Plac/ara-1 is suppressed by the LacI
suppressor. Exogenously adding IPTG induces cheZ expression
by reducing LacI suppression. (b) Cells are expected to tumble
continuously at low IPTG concentration and to enter a smooth
swimming state at high IPTG concentration.

tumbling swimming

FIG. 2. Theoretical ISFs for a suspension comprising a frac-
tion α of RT bacteria and 1 − α of diffusing cells, for several
wave numbers k. We consider different fractions of run time
pR ¼ τR=ðτR þ τTÞ, using τR ¼ 1 s and τT ¼ 0; 0.1; 0.5 s, with
v̄¼ 15 μms−1, σv ¼ 4.5 μms−1, D ¼ 0.3 μm2 s−1, and α ¼
0.95. For smooth swimmers with fixed speed v0, fðk; τÞ ¼
sincðv0kτÞ expð−Dk2τÞ. When pR ¼ 1, this leads to clear oscil-
lations of fðk; τÞ at small length scales (red arrow).As the tumbling
rate τ−1T increases (black arrow), these oscillations are smeared out
and the diffusive dynamics of the tumbling bacteria eventually
leads to a diffusive plateau around f ∼ 1 − pR. At large but finite
times, depending on the value of k, the diffusive cells may not have
decorrelated, leading to a nonzero plateau of fðk; τÞ (blue arrow).
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disentangling the contributions of diffusion, swimming,
and tumbling to the dynamics (Fig. 2). Fitting Eq. (2)
to data finally yields the set of kinetic parameters
fv̄; σv; τR; τT; α; Dg.
To measure the ISF experimentally, we imaged cells in

sealed capillaries on a fully automated inverted bright-field
microscope with a sCMOS camera. A full characterization
of RT dynamics requires accessing length scales much
greater than the persistence length lp in all directions. This
necessitated a large depth of field at low k to ensure that
bacteria remain in view over large distances in 3D. We thus
consecutively recorded movies at 2× and 10× magnifica-
tions and extracted the corresponding ISFs for k<0.9 μm−1

and k ≥ 0.9 μm−1 using DDM [44,56], which are then
fitted to our renewal theory using a numerical protocol
described elsewhere [54].
IPTG-induced transition from tumbling to swimming.—

We grew suspensions of the NZ1 strain at several IPTG
concentrations and measured the ISFs. Representative data
over approximately four decades in time and two decades
in length are shown in Fig. 3(a). Oscillations typical of
persistent swimmers (Fig. 2) are seen most clearly at the
higher IPTG concentration and high k values.
In more detail, Fig. 3(b) compares the ISFs at a given k

for three IPTG concentrations. In the absence of IPTG,
diffusion dominates and the oscillations are absent. At
IPTG ¼ 25 μM, oscillations are seen for k ¼ 0.66 μm−1

and k ¼ 0.1 μm−1 (corresponding to length scales of

∼2π=k ≈ 10 and 60 μm, respectively), while data at the
smallest k shows a smooth decay: the RT dynamics
becomes effectively diffusive on such a large scale. At
the highest IPTG concentration, 150 μM, oscillations are
seen at all scales, showing a strong enhancement of the
persistence length. To our knowledge, this is the first
demonstration of a controlled tuning of the 3D gait of
E. coli by varying external conditions.
Our protocol also allows us to quantify phenotypic

heterogeneity. We repeated such measurements for eight
IPTG concentrations, using two biological replicates and
typically three to four successive measurements of fðk; τÞ
per replicate and IPTG concentration. The fitted kinetic
parameters are then averaged for each replicate and plotted
in Fig. 3(c). The small error bars show that successive
measurements of fðk; τÞ at each condition and for each
biological replicate yielded consistent results. The observed
variability between replicates (compare red and blue
data points) therefore quantifies the degree of phenotypic
heterogeneity in a clonal population [66].
Increasing IPTG leads to a robust increase of the

persistence length, lp ¼ v̄τR, which translates into oscil-
lations in the ISF [Figs. 3(a) and 3(b)]. Capturing quanti-
tatively such fine-grained features requires very good
statistics, a narrow speed distribution, and a low fraction
of nonmotile cells, a challenge that is met by the exper-
imental protocol described in [55]. Finally, note that there is
little variability in the average speed (v̄ ≃ 23.5 μm−1 at all
finite IPTG concentrations), the tenfold increase in lp

FIG. 3. Engineered E. coli strain NZ1. (a) ISFs for IPTG concentrations 25 and 150 μM. The ISFs are shifted vertically and gray
dotted lines correspond to f ¼ 0. Symbols and lines represent experiments and fits to the theory, respectively, and different colors
correspond to different wave numbers k. (b) Comparison of the ISFs for different IPTG concentrations and wave numbers. (c) Average
speed v̄, run time τR, and persistence length lp, as a function of IPTG concentration. Red and blue symbols correspond to two biological
replicates. The error is estimated from successive measurements of the ISF using the same sample. (d) Independent measurements of the
number of CheZ mRNA per cell at various IPTG concentrations (left panel) allow correlating the persistence length lp and the number
of CheZ mRNA per cell (right panel).
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results from longer run durations. This shows that the
expression level of CheZ thus impacts tumbling statistics
without altering the bacteria swimming speed.
Given the high speed of our NZ1 strain and the long run

durations at high IPTG concentrations, the extraction of τR
requires sampling large length scales, at which we find that
the tumbling times τT cannot be reliably measured. We
have tested the robustness of our results with respect to τT
by fixing it at τT ¼ 0.1; 0.2; 0.3 s and extracting the
remaining kinetic parameters. We find that the average
velocity of the bacteria remains unaffected and the sys-
tematic increase of the persistence length persists (Fig. S1
[55]). Finally, while measurements of the evolution of
single-motor statistics of wilde-type (WT) E. coli in
different environments have been reported before [23],
Fig. 3(d) shows for the first time the measured correlation
between lp and the number of CheZ mRNA in the cell.
Wild-type E. coli.—Figure 4 shows the measured ISFs

for a dilute suspension of WT E. coli over approximately
four decades in time and two decades in length. The ISFs
display an intermediate plateau at large k, which is a
signature of the diffusive motion of both the small non-
motile fraction (≲5%) and of the tumbling cells. The
plateau disappears at low k and long times, which reflects
the randomization of the swimming direction.
The WT data are well fitted by our renewal theory [54] at

all k (Fig. 4, solid lines). We find that 96� 0.1% of the
bacteria swim at a mean speed v̄ ¼ 16� 0.1 μms−1 with
standard deviation σv ¼ 5.78� 0.13 μms−1 (errors are
obtained by a jackknife resampling method [67]).
The lower WT speed (cf. v̄ ≈ 24 μms−1 for NZ1)

allows us to fit the mean run and tumble durations: τR ¼
2.39� 0.11 s (so that l ¼ v̄τR ¼ 38� 2 μm) and τT ¼
0.38� 0.02 s, giving a run fraction of pR ¼ τR=
ðτR þ τTÞ ≃ 0.86. Original, and still widely cited, measure-
ments also gave pR ≃ 0.86, but with τR ¼ 0.86� 0.20 s
and τT ¼ 0.14� 0.03 s [1]. These results were obtained by

tracking 35 bacteria, while we averaged over ∼104–106
bacteria.
Finally, our data allow us to probe a range of length and

time scales large enough to bridge short-scale directed
swimming and large-scale diffusive motion. This is an
important challenge since recent experiments have ques-
tioned the experimental relevance of exponentially distrib-
uted run and tumble durations [22,27]. The ISF of purely
diffusive particles, fðk; τÞ ¼ A expð−k2DeffτÞ, where A is a
constant, gives a good account of our large-scale data
(shown for two values of k in Fig. 5). Averaging over our
two smallest values of k leads to hDeffi¼ 185�7 μm2 s−1.
In an RT model with exponentially distributed run and

tumble durations, hDth
effi¼ ðv̄2þσ2vÞτ2R=ð3τRþ3τTÞ. Using

parameters from fitting the measured ISF (caption, Fig. 4),
we find hDth

effi ¼ 198� 11 μm2 s−1, which is remarkably
close to the measured value. Interestingly, the σ2v term
arising from velocity fluctuations contributes to ∼10% of
the value of hDth

effi. Note that our measured Deff is 3 orders
of magnitude larger than the fitted single-particle diffu-
sivity, D ¼ 0.24� 0.01 μm2 s−1, which highlights the
ability of our protocol to provide information on active-
particle dynamics over a large spatiotemporal range.
Conclusion.—By characterizing the dynamics of E. coli

over a wide range of length and time scales, we demon-
strated for the first time how the tumbling dynamics of an
engineered strain can be tuned independently of the
swimming speed. Furthermore, we have characterized to
a high statistical accuracy the full 3D gait of WT E. coli in
bulk suspensions, directly characterizing for the first time
both the small-scale persistent motion and the large-scale
diffusion. We have shown that a microscopic run and
tumble model with exponentially distributed run and
tumble durations describes both regimes. The use of more
realistic distributions [27] can be accommodated in our
approach, but is unlikely to change significantly any of our

FIG. 4. Measurements of the ISFs for a WT E. coli suspension
(symbols). Fits to Eq. (2) (lines) lead to v̄ ¼ 15.95 μms−1,
σv¼ 5.78 μms−1, D ¼ 0.24 μm2 s−1, α ¼ 0.96, τR ¼ 2.39 s,
and τT ¼ 0.38 s. The ISFs are shifted vertically as in Fig. 3(a).

FIG. 5. Measured ISFs of WT E. coli at k ¼ 0.0126 μm−1 and
k ¼ 0.0151 μm−1 (symbols) fitted against the ISF of diffusive
particles (lines), giving effective diffusivities Deff¼ 192 μm2 s−1

and Deff¼ 178 μm2 s−1, respectively. The ISFs are shifted ver-
tically as in Fig. 3(a).
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conclusions. We also note that, while our bulk approach is
well suited to characterize the population-scale distribution
of motility gaits, cell tracking remains a very useful tool to
investigate more precisely the detail of single-cell trajecto-
ries and investigate their diversity [1,27,63,68].
Our Letter lays the foundation for the high-throughput

study of the swimming gait of a variety of microorganisms,
such as the RT pattern of Bacillus subtilis [63] or the run-
reverse motion of marine bacteria [69] and archaea [70],
using standard microscopy. We hope that this will allow for
a more systematic characterization of the role of cell
motility in collective self-organization, which is often
studied at a purely macroscopic scale due to the long-
standing difficulty in characterizing cell motion at the
microscopic level [71]. We note that the ability of micro-
organisms to respond to chemical fields or gradients,
through quorum sensing or chemotaxis, is a vital part of
their foraging and survival strategy. Our method, in
combination with spatiotemporally resolved DDM [20],
opens the way to the high-throughput study of such
response at the population level.
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