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Many complex systems that exhibit temporal nonpairwise interactions can be represented by means of
generative higher-order network models. Here, we propose a hidden variable formalism to analytically
characterize a general class of higher-order network models. We apply our framework to a temporal higher-
order activity-driven model, providing analytical expressions for the main topological properties of the
time-integrated hypergraphs, depending on the integration time and the activity distributions characterizing
the model. Furthermore, we provide analytical estimates for the percolation times of general classes of
uncorrelated and correlated hypergraphs. Finally, we quantify the extent to which the percolation time of
empirical social interactions is underestimated when their higher-order nature is neglected.

DOI: 10.1103/PhysRevLett.132.037401

An extremely broad category of complex systems can be
represented as networks, where nodes describe units and
links encode their pairwise interactions [1]. Despite wide-
spread use, the dyadic structure does not allow for an
accurate description of all those systems where nonpairwise
interactions play a fundamental role, from human [2] and
animal [3] social networks to collaboration networks [4],
drug recombination [5], cellular networks [6], species
interactions [7], and the human brain [8–10]. Such systems
are better described by hypergraphs [11], where hyperedges
encode interactions among an arbitrary number of system
units [12]. Taking into account higher-order interactions has
been shown to significantly affect collective behaviors in
networked dynamics [12,13], including diffusion [14,15],
synchronization [16–21], contagion [22–24], and evolu-
tionary [25–27] processes.
Furthermore, networks are inherently dynamic, with

interactions evolving in time [28]. While extensive research
has been devoted to model temporal networks [29–31] and
the behavior of dynamical processes unfolding on their
top [32–35], the interest in temporal higher-order networks
blossomed only recently. Higher-order interactions have
been observed to occur in bursts in real face-to-face
interaction systems [36] and display temporal correlations
among different orders [37], and temporal dynamics is
known to affect the epidemic threshold in higher-order
models of social contagion [23,38]. With a few notable
exceptions [37,39], most models of higher-order networks
are static generalizations of Erdos-Renyi [40] or configu-
ration models [41–43] or are limited to networks that grow
over time [44,45]. Modeling temporal group dynamics and
predicting their connectivity properties at the microscale is
still an open problem.

Here, we introduce a general approach to analytically
characterize higher-order time-varying networks by means
of a hidden variable (HV) framework. In pairwise net-
works, HVs were introduced to model the presence of links
in networks with structural correlations [46]. Until now, the
HV formalism has been employed across a vast spectrum of
first-order generative processes, such as to map networks
into embedded spaces, including latent [47] and hyperbolic
spaces [48], fitness models [49,50], protein interaction [51],
and social distance [52]. Furthermore, the HV formalism
has been applied to networks evolving over time [53] and
networks with inherent correlations [46], and subsequently
employed to pinpoint the topological characteristics of
activity-driven networks [31,54,55]. However, the afore-
mentioned works neglected the higher-order organization
of the considered social and biological systems.
In this Letter, we propose a higher-order HV formalism

that provides a powerful approach to describe higher-
order networked systems, applicable to a wide range of
generative models. As a demonstration of its versatile
applicability, we apply our framework to a higher-order
activity-driven model, where group interactions of different
sizes are generated over time. We study the connectivity
properties of the time-integrated system, obtaining analyti-
cal asymptotic expressions for the hyperdegree distribution
and hyperdegree correlations over time. We obtain these
results in the limit of sparse networks and large hyper-
degrees. We provide analytical estimates for the percolation
times of general classes of uncorrelated and correlated
hypergraphs marking the onset of a giant connected
component in the higher-order systems. We conclude by
showing that neglecting the higher-order nature of inter-
actions in empirical social networks leads to systematically
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underestimating the percolation threshold, with implica-
tions for any dynamical process running on such systems.
Higher-order hidden-variable formalism.—We start by

developing the HV formalism for higher-order networks.
Each node i of a network of N nodes is endowed with an

intrinsic vectorial HV hi ¼ ðhð1Þi ; hð2Þi ;…; hðmÞ
i ;…Þ, where

the HV hðmÞ
i determines the m-order interactions of node i.

For each order m, hðmÞ
i is drawn from an independent

distribution ρðhðmÞÞ. The higher-order HV model assumes
that the existence of an m-order hyperlink among mþ 1
nodes depends only on their HV, i.e., a connection

probability IPðhðmÞ
1 ;…; hðmÞ

m ; hðmÞ
mþ1Þ. In general terms, the

hyperdegree distribution PðkðmÞÞ (being kðmÞ the number of
m-links of a node) can be written as a function of the HV
distribution as

PðkðmÞÞ ¼
X
hðmÞ

gðkðmÞjhðmÞÞρðhðmÞÞ; ð1Þ

where gðkðmÞjhðmÞÞ is the conditional probability (propa-
gator) that a node with HV hðmÞ ends up with a certain
hyperdegree kðmÞ.
As in the first-order case [46], the propagator can be

expressed as the convolution of partial propagators. For
instance, for m ¼ 2,

gðkð2Þjhð2ÞÞ ¼
X

fkð2Þij g
δk

ð2ÞP
kð2Þij

YC
i≥j

gðh
ð2ÞÞ

ij ðkð2Þij jhð2Þi ; hð2Þj Þ; ð2Þ

where gðh
ð2ÞÞ

ij ðkð2Þij jhð2Þi ; hð2Þj Þ is the probability that a node

(with HV hð2Þ) ends up with kð2Þij second-order interactions,

with neighbors of HVs hð2Þi and hð2Þj . In the convolution, we
take into account all the possible pairs of classes of HVs

excluding permutations (i ≥ j), being hð2ÞC the maximum
value of hð2Þ, and we sum over the set of all possible

second-order degree values fkð2Þij g ¼ fkð2Þ11 ; k
ð2Þ
12 ;…; kð2ÞCCg.

The Kronecker delta constrains that the final second-order

degree kð2Þ is equal to the sum of the partial degrees kð2Þij .
See Supplemental Material [56] for the explicit m-order
general expression.
For any m, one can solve the convolutional equation by

resorting to the generating function of the propagator,
ĝðzjhðmÞÞ ¼ P

k z
kðmÞ

gðkðmÞjhðmÞÞ, where, for a lighter nota-
tion, fromnowonwe indicatehðmÞ ash. Since the propagator
is the convolution of partial propagators, given by Eq. (2), its
generating function is equal to the product of the generating
functions of the partial propagators. If hyperlinks are
independently drawn according to the HV of nodes, the
partial propagators are binomial distributions, and their
generating functions can be obtained easily (see [56]).

The logarithm of the generating function can be eventually
written as a function of the HV distribution and the
connection probability IPðh; h1;…; hmÞ,

ln ½ĝðzjhÞ� ¼ Nm

m!

X
h1;…;hm

ρðh1Þ;…; ρðhmÞ;

× ln
�
1 − ð1 − zÞIPðh; h1;…; hmÞ

�
; ð3Þ

where one has to sum (integrate) over m HV distributions
and the factor m! comes from excluding permutations.
In the limit of sparse networks, IPðh; h1;…; hmÞ ≪ 1,

the generating function of the propagator is exponential,
thus indicating that the propagator is a Poisson distribution
for every order m, as in the dyadic case m ¼ 1 [46]. From
the generating function of the propagator ĝ, one can
compute the expected m degree of a node with HV h by
means of the first derivative of ĝðzjhÞ at z ¼ 1 [46], and it
reads

k̄ðmÞðhÞ ¼ Nm

m!

X
h1;…;hm

ρðh1Þ;…; ρðhmÞIPðh; h1;…; hmÞ: ð4Þ

Instead, the problem-specific piece of information that
allows us to treat different models is contained in Eq. (4)
through the connection probability IPðh; h1;…; hmÞ,
which is the key ingredient to find the hyperdegree dis-
tribution, given by Eq. (1).
Similarly, we can study hyperdegree correlations starting

from the conditional connection probability. We define the
averagem-order degree of the neighbors of a node with HV
h as (see Supplemental Material [56]),

k̄ðmÞ
nn ðhÞ

¼
X

h1;…;hm

�
k̄ðmÞðh1Þ þ � � � þ k̄ðmÞðhmÞ

m

�
pðh1;…; hmjhÞ;

ð5Þ

where pðh1;…; hmjhÞ is the conditional probability that a
node with HV h is connected to nodes with HV
h1; h2;…; hm. The average m degree of the neighbors of

a node withm degree k, k̄ðmÞ
nn ðkÞ, can be eventually found by

following [46], obtaining a form equivalent to the first-
order case. Therefore, the HV formalism allows us to obtain
the hyperdegree correlations of a large variety of higher-
order generating processes simply by knowing the HV
distribution and the connection probability depending on
these variables.
The higher-order activity-driven model.—We apply the

higher-order HV framework to the higher-order activity-
driven (HOAD) model, describing temporal group dynam-
ics, inspired by a very similar model for simplicial
complexes [39]. Each agent i in a population of size N
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is endowed with a higher-order activity potential ai ¼
ðað1Þi ; að2Þi ;…; aðmÞ

i Þ for every interaction order m. The
activities of the agents are random variables, extracted
from distributions ρðaÞ ¼ ðρðað1ÞÞ; ρðað2ÞÞ;…; ρðaðmÞÞÞ,
which we assume to be independent. The activity of node

i at order m, aðmÞ
i , represents the probability that they

engage in an interaction with m other nodes in a certain
time interval Δt.
The HOAD model generates temporal hypergraphs

starting by N initially disconnected nodes. At every time
step, each node i generates one hyperlink of orderm toward
randomly selected nodes, with probability proportional to

their activity aðmÞ
i . At the following time step, the existent

higher-order interactions are erased and the process con-
tinues. The temporal hypergraph is defined by the sequence
of instantaneous, sparse hypergraphs generated at each time
step. One can obtain a static hypergraph by integrating all
instantaneous hypergraphs up to a certain time T, where
two nodes i and j will be connected if any hyperedge
between them exists in any instantaneous hypergraph
in t∈ ½1; T�.
Topological properties of HOAD networks.—We now

compute the topological properties of the HOAD networks
integrated up to a certain time T by mapping the HOAD
model to the HV formalism. First, since the activity
distributions of different orders are assumed independent,
we treat every order separately and omit the order depend-
ency for brevity from now on, a ¼ aðmÞ. The key step for
the HV mapping resides in computing the probability that a
node with activity potential ai will be connected with a set
of m other nodes, with activity a1;…; am, at time T in the
integrated network, namely, IPTða; a1;…; amÞ. By follow-
ing [54], we can find this expression starting from the
probability QTða; a1;…; amÞ ¼ 1 − IPTða; a1;…; amÞ that
the set of mþ 1 nodes is not connected by an m-order link
until time T. Considering that every time a node is active it
selectsm random neighbors for anm-order link and that the
number of times a node can be active until time T is
described by a binomial distribution, we write

IPTða; a1;…; amÞ ≃
m!

Nm ðaþ a1 þ � � � þ amÞT; ð6Þ

where we have worked in the limit of N ≫ T ≫ 1 (see
Supplemental Material [56]). By inserting Eq. (6) into
Eq. (4), we can obtain for N ≫ m the expected m-order
degree of nodes with activity a, at time T,

k̄ðmÞ
T ðaÞ ≃ TðaþmhaiÞ; ð7Þ

where hai ¼ P
a aρðaÞ denotes the usual average of acti-

vity of order m over the population. The expected m-order
degree is intuitively equal to aT outgoing m-order links
plus mThai connections received from random neighbors.

By inserting Eq. (7) into the Poissonian form of the
propagator and substituting it into Eq. (1), one can obtain
the asymptotic limit of the degree distribution of orderm of
the aggregated network until time T (see Supplemental
Material [56]),

PTðkðmÞÞ ≃ 1

T
ρ

�
kðmÞ

T
−mhai

�
: ð8Þ

The last expression is obtained in the limit of large N and
small T, T ≪ ðNm=m!Þ and for T2 ≫ kðmÞ ≫ 1 (see
Supplemental Material [56]). Figure 1(a) shows the hyper-
degree distribution PTðkðmÞÞ of HOAD networks integrated
at time T, as obtained by numerical simulations.
We arbitrarily select a power-law activity distribution,
yet Eq. (8) is general for any distribution ρ. The model
is implemented as part of the library HGX [57]. One can see

FIG. 1. Topological properties of HOAD networks. (a) Hyper-
degree distribution PTðkðmÞÞ; Eq. (8) shown as a dashed line.

(b) Hyperdegree correlations k̄ðmÞ
nn;TðkÞ; Eq. (9) shown as a dashed

line. Network size N ¼ 106, orders m ¼ 1, 2, 5, integration time
T ¼ 103. Different values of T and m are shown in the
Supplemental Material [56]. The activity distributions ρðaÞ of
order m have a power-law form for every order with exponent
γ ¼ 2.25.
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a good agreement with the asymptotic behavior indicated
by Eq. (8).
Hyperdegree correlations of HOAD networks.—The

average m-order degree of the neighbors of a node with

activity a at time T, k̄ðmÞ
nn;TðaÞ, is obtained by the HV

mapping of Eq. (5). To this aim, one needs to compute
the conditional probability pða1; a2;…; amjaÞ that a node
with activity a is connected to nodes with activities
a1; a2;…; am by using the connection probability of the
HOAD model, given by Eq. (6), and the expectedm degree
of nodes with activity a at time T, given by Eq. (7). After

obtaining k̄ðmÞ
nn;TðaÞ (see Supplemental Material [56] for the

analytical expression), the m-order degree-degree correla-
tion can be obtained by following [46] and it reads

k̄ðmÞ
nn;TðkÞ − 1

T
≃ ðmþ 1Þhai þ σ2

�
kðmÞ

T

�
−1
; ð9Þ

where σ2 ¼ ha2i − hai2 of the m-order activity.
The last expression, valid in the limit of kðmÞ ≫ 1 and

sparse network (Supplemental Material [56]), gives an

asymptotic prediction of k̄ðmÞ
nn;TðkÞ as a function of the first

two momenta of the activity distribution of order m.
Figure 1(b) shows the correlations minus its first moment
of HOAD networks integrated at time T, as obtained by
numerical simulations. As for the degree distribution, we
plot the rescaled hyperdegree correlations, the differences
between the correlations and their leading approximation in
order to show how it decays with T=kðmÞ and the collapse of
the curves for three different orders m ¼ 1, 2, 5. One can
see that the disassortative behavior proportional to ðkðmÞÞ−1
and governed by σ2, as predicted by Eq. (9), is confirmed
by numerical simulations.
Temporal percolation of HOAD networks.—The con-

nectivity properties of the time-integrated HOAD networks
allow us to characterize the temporal percolation, i.e., the
time Tp marking the onset of a giant connected component
in the integrated network. The percolation time Tp is
particularly relevant for dynamical processes unfolding
of these temporal networks, since any process with a
characteristic lifetime smaller than Tp will be unable to
explore a sizable fraction of the network.
The details of the derivation of the percolation times are

reported in the Appendix. We first obtain the conditions for
the percolation threshold of static correlated and uncorre-
lated hypergraphs of order m. Then, we map these results
into the HOAD model, by writing the degree momenta
as a function of the activity distribution, thus finding the
percolation times for correlated and uncorrelated HOAD
networks. The percolation time for correlated HOAD
networks of order m reads

TðmÞ
c ¼ 2

haiðmþ 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hai2ðm2 þ 2m − 3Þ þ 4ha2i

p :

ð10Þ

We test the validity of the prediction given by Eq. (10) by
running extensive numerical simulations. Figure 2(a)
shows the growth of the giant component size S over time
and the peak of its variance σðSÞ2, indicating the estimated
percolation time, for several ordersm. The percolation time
predicted by Eq. (10) has a decent agreement with
numerical results, yet they do not exactly coincide. We
thus run a finite-size scaling analysis by assuming that the

relative difference between the actual percolation time TðmÞ
c

in the thermodynamic limit and the one found in a network
of size N, TðmÞðNÞ, follows a scaling law of the form

½TðmÞðNÞ − TðmÞ
c �=TðmÞ

c ∼ N−ν for every m. Figure 2(b)
shows that the finite-size hypothesis holds; the percolation
time estimated by the peak over time of the variance of the

FIG. 2. Percolation time of HOAD networks. Orders m ¼ 1, 2,
5. (a) Giant component size S=N (continuous line) and the peak
of its variance σðSÞ2 (dashed line) over time. The theoretical
prediction given by Eq. (10) is indicated as a vertical line.
(b) Finite-size scaling analysis of the relative difference

½TðmÞðNÞ − TðmÞ
c �=TðmÞ

c (circles) and corresponding scaling law
N−ν (dashed line). Results are averaged over 102 runs.
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giant component size actually approaches TðmÞ
c for any

order m in the thermodynamic limit N → ∞.
Empirical data.—Finally, we show the potential of the

HOAD modeling framework by testing the theoretical
predictions for the percolation time on higher-order empir-
ical data, comparing it with the first-order percolation. For
this latter case, we project all interactions into the first
order, thus representing higher-order data as a simple
network, losing part of the information contained therein.
We consider two datasets of scientific collaboration net-
works in the fields of geology and history, collected
by the Microsoft Academic graph (see Supplemental
Material [56] for details). We inform first- and higher-
order activity-driven models with empirical activities
extracted from the dataset and compare the first-order
(Tð1Þ) andm-order (TðmÞ) percolation times of the networks.
The percolation points are obtained by calculating the time
for which the variance of the component size distribution is
maximum.
Figure 3 shows that the m-order percolation time TðmÞ

estimated by numerical simulations of the HOAD model
informed by empirical data is in good agreement with the

theoretical prediction TðmÞ
c given by Eq. (10) for every order

m. Moreover, Fig. 3 shows that the first-order percolation
time Tð1Þ is much smaller than the actual m-order one TðmÞ
and such a difference increases with the orderm. Therefore,
an incorrect representation of higher-order data as classic
dyadic interactions leads to a substantial underestimation of
the true higher-order percolation times, up to 50% already
for m ¼ 5; that is, small groups of six people.
Conclusions.—In this Letter, we showed that the topo-

logical and percolation properties of temporal higher-order
networks can be obtained by mapping such networks to a
higher-order HV formalism. We illustrate the potential of

our theoretical framework by quantitatively showing how
much the percolation times of higher-order empirical social
networks are underestimated if higher-order interactions
are neglected. This result is particularly interesting within
the framework of epidemic processes: a disease spreading
with a short timescale is expected to percolate when the
underlying contact network is assumed to be formed by
dyadic interactions, but it would not percolate in the
corresponding higher-order network representation. Note,
however, that our finding holds within the specific activity-
driven modeling framework. Further research should be
devoted to addressing this setting in different modeling
frameworks and on real contact networks.
The higher-order HV framework we developed holds

potential for future applications across a wide array of
higher-order and temporal generative models. For instance,
it could be applied to higher-order fitness models [49] or
social dynamics models including higher-order interactions
mapped into latent spaces [52]. Likewise, it could be
extended to describe network models incorporating non-
Markovian dynamics [31], which has shown to have a deep
impact on epidemic processes. Future research could
quantify and model the presence of correlations between
different interaction orders, as well as their effects on the
connectivity and percolation properties of time-integrated
networks. We hope that our work will stimulate further
research to apply the higher-order HV framework to other
empirical, time-varying complex systems.

We acknowledge Romualdo Pastor-Satorras for useful
discussions. F. B. acknowledges support from the Air Force
Office of Scientific Research under Grant No. FA8655-22-
1-7025.

Appendix: Temporal percolation.—Here we show how
we calculate the percolation times for correlated and
uncorrelated HOAD networks. We first consider static
hypergraphs of order m whose nodes may be removed
with probability 1 − p. Following the approach outlined
in [58], we determine the probability xk of avoiding a
giant connected component while traversing an m-order
hyperlink (connecting mþ 1 nodes) starting from a node
with hyperdegree k (we omit the dependency in m).
This condition can be expressed as

xk ¼
h
1 − pþ p

X
k0
Pðk0jkÞxk0−1k0

i
m
; ðA1Þ

where Pðk0jkÞ is the probability that a node with m
degree k is connected with a node of m-order degree k0
and we assume that the probability xk0 of each of the m
nodes to be connected to the giant component is
independent of each other, so we exponentiate the same
probability to the m. Close to the percolation threshold,
we have xk ⪅ 1; hence defining yk ¼ 1 − xk⪆0 and
expanding Eq. (A1) (see Supplemental Material [56] for

FIG. 3. Percolation times in empirical data. Geology (stars) and
history (circles) scientific collaboration networks. Blue points,
ratios between the first-order (Tð1Þ) and m-order (TðmÞ) percola-
tion times of networks informed by empirical activities, estimated
from numerical simulations; yellow points, ratios between the

theoretical prediction from Eq. (10) TðmÞ
c and the percolation

times of networks informed by empirical activities estimated
from numerical simulations TðmÞ.
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detailed calculations), we get

yk ¼ mp
X
k0
BðmÞ

kk0 yk0 ; ðA2Þ

where we have defined the m-order branching matrix asP
k0 B

ðmÞ
kk0 yk0 ¼

P
k0 ðk0 − 1ÞPðk0jkÞyk0 . In addition to a

multiplicative factor m, Eq. (A2) is equivalent to the result
found for simple networks [58], having also the same

elementwise representation of BðmÞ
kk0 for every m (see [56]).

The last expression also allows us to find the percolation
condition for uncorrelated hypergraphs, by writing the
conditional probability as Pðk0jkÞ ¼ ρðk0Þk0=hki. In this
way, we find the m-order version of the well-known
Molloy-Reed criterion [59]hk2i − hki=hki > 1=m, already
found in [60]. By explicitly writing the degree momenta as
a function of the activity distribution, the percolation time
for uncorrelated hypergraphs reads

TðmÞ
unc ¼ ðmþ 1Þhai

mðmþ 2Þhai2 þ ha2i : ðA3Þ

The percolation threshold for correlated networks is
instead given by the conditionmpcλ

ðmÞ
1 ¼ 1 from Eq. (A2),

where λðmÞ
1 is the dominant eigenvalue of the m-order

branching matrix BðmÞ
kk0 , as guaranteed by the Perron-

Frobenius theorem [58], and pc is the critical density of
nodes for the onset of a giant connected component. The

largest eigenvalue λðmÞ
1 can be found by means of the HV

formalism by following [55], as a function of the first and
second degree momenta of order m, hkiTp

and hk2iTp
(see

Supplemental Material [56]). We then map these expres-
sions into the HOADmodel, where the degree momenta are
given by the activity distributions, and find the percolation
time for correlated HOAD networks [Eq. (10) of the
main text].
Both analytical predictions for correlated and uncorre-

lated networks depend on the first two momenta of ρðaÞ.
For large m, we have TðmÞ

c;unc ∝ ð1=mÞ → 0 for both
correlated and uncorrelated cases, so the uncorrelated
percolation time approaches the correlated one in this
limit. The difference between the two times is maximum
for strongly heterogeneous networks, see the Supplemental
Material [56].
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Bianconi, Phys. Rev. Lett. 127, 158301 (2021).

[39] G. Petri and A. Barrat, Phys. Rev. Lett. 121, 228301 (2018).
[40] M. Barthelemy, Phys. Rev. E 106, 064310 (2022).
[41] O. T. Courtney and G. Bianconi, Phys. Rev. E 93, 062311

(2016).
[42] J.-G. Young, G. Petri, F. Vaccarino, and A. Patania, Phys.

Rev. E 96, 032312 (2017).
[43] P. S. Chodrow, J. Complex Netw. 8, cnaa018 (2020).
[44] K. Kovalenko, I. Sendiña-Nadal, N. Khalil, A. Dainiak, D.

Musatov, A. M. Raigorodskii, K. Alfaro-Bittner, B. Barzel,
and S. Boccaletti, Commun. Phys. 4, 1 (2021).

[45] A. P. Millán, R. Ghorbanchian, N. Defenu, F. Battiston, and
G. Bianconi, Phys. Rev. E 104, 054302 (2021).

[46] M. Boguná and R. Pastor-Satorras, Phys. Rev. E 68, 036112
(2003).

[47] R. Rastelli, N. Friel, and A. E. Raftery, Network Sci. 4, 407
(2016).

[48] M. Kitsak, I. Voitalov, and D. Krioukov, Phys. Rev. Res. 2,
043113 (2020).

[49] G. Caldarelli, A. Capocci, P. De Los Rios, and M. A.
Munoz, Phys. Rev. Lett. 89, 258702 (2002).

[50] K. Hoppe and G. J. Rodgers, Phys. Rev. E 90, 012815
(2014).

[51] G. A. Miller, Y. Y. Shi, H. Qian, and K. Bomsztyk, Phys.
Rev. E 75, 051910 (2007).

[52] M. Boguná, R. Pastor-Satorras, A. Díaz-Guilera, and A.
Arenas, Phys. Rev. E 70, 056122 (2004).

[53] H. Hartle, F. Papadopoulos, and D. Krioukov, Phys. Rev. E
103, 052307 (2021).

[54] M. Starnini and R. Pastor-Satorras, Phys. Rev. E 87, 062807
(2013).

[55] M. Starnini and R. Pastor-Satorras, Phys. Rev. E 89, 032807
(2014).

[56] See SupplementalMaterial at http://link.aps.org/supplemental/
10.1103/PhysRevLett.132.037401 for detailed mathematical
derivations.

[57] Q. F. Lotito, M. Contisciani, C. De Bacco, L. Di Gaetano, L.
Gallo, A. Montresor, F. Musciotto, N. Ruggeri, and F.
Battiston, J. Complex Netw. 11, cnad019 (2023).

[58] A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Phys.
Rev. E 78, 051105 (2008).

[59] M. Molloy and B. Reed, Random Struct. Algorithms 6, 161
(1995).

[60] H. Sun and G. Bianconi, Phys. Rev. E 104, 034306
(2021).

PHYSICAL REVIEW LETTERS 132, 037401 (2024)

037401-7

https://doi.org/10.1103/PhysRevLett.114.108701
https://doi.org/10.1103/PhysRevLett.114.108701
https://doi.org/10.1103/PhysRevE.83.025102
https://doi.org/10.1103/PhysRevE.83.025102
https://doi.org/10.1038/ncomms6024
https://doi.org/10.1103/PhysRevLett.111.188701
https://doi.org/10.1103/PhysRevLett.111.188701
https://doi.org/10.1088/1367-2630/ab3f6e
https://doi.org/10.1088/1367-2630/ab3f6e
https://doi.org/10.1038/s41598-020-79139-8
https://doi.org/10.1038/s41598-020-79139-8
https://arXiv.org/abs/2303.09316
https://arXiv.org/abs/2303.09316
https://doi.org/10.1103/PhysRevLett.127.158301
https://doi.org/10.1103/PhysRevLett.121.228301
https://doi.org/10.1103/PhysRevE.106.064310
https://doi.org/10.1103/PhysRevE.93.062311
https://doi.org/10.1103/PhysRevE.93.062311
https://doi.org/10.1103/PhysRevE.96.032312
https://doi.org/10.1103/PhysRevE.96.032312
https://doi.org/10.1093/comnet/cnaa018
https://doi.org/10.1038/s42005-020-00504-0
https://doi.org/10.1103/PhysRevE.104.054302
https://doi.org/10.1103/PhysRevE.68.036112
https://doi.org/10.1103/PhysRevE.68.036112
https://doi.org/10.1017/nws.2016.23
https://doi.org/10.1017/nws.2016.23
https://doi.org/10.1103/PhysRevResearch.2.043113
https://doi.org/10.1103/PhysRevResearch.2.043113
https://doi.org/10.1103/PhysRevLett.89.258702
https://doi.org/10.1103/PhysRevE.90.012815
https://doi.org/10.1103/PhysRevE.90.012815
https://doi.org/10.1103/PhysRevE.75.051910
https://doi.org/10.1103/PhysRevE.75.051910
https://doi.org/10.1103/PhysRevE.70.056122
https://doi.org/10.1103/PhysRevE.103.052307
https://doi.org/10.1103/PhysRevE.103.052307
https://doi.org/10.1103/PhysRevE.87.062807
https://doi.org/10.1103/PhysRevE.87.062807
https://doi.org/10.1103/PhysRevE.89.032807
https://doi.org/10.1103/PhysRevE.89.032807
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.037401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.037401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.037401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.037401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.037401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.037401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.037401
https://doi.org/10.1093/comnet/cnad019
https://doi.org/10.1103/PhysRevE.78.051105
https://doi.org/10.1103/PhysRevE.78.051105
https://doi.org/10.1002/rsa.3240060204
https://doi.org/10.1002/rsa.3240060204
https://doi.org/10.1103/PhysRevE.104.034306
https://doi.org/10.1103/PhysRevE.104.034306

