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Generalizing response theory of open systems far from equilibrium is a central quest of nonequilibrium
statistical physics. Using stochastic thermodynamics, we develop an algebraic method to study the static
response of nonequilibrium steady state to arbitrary perturbations. This allows us to derive
explicit expressions for the response of edge currents as well as traffic to perturbations in kinetic barriers
and driving forces. We also show that these responses satisfy very simple bounds. For the response to
energy perturbations, we straightforwardly recover results obtained using nontrivial graph-theoretical
methods.
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Introduction.—Linear response theory is a central tenet in
statistical physics [1–3]. The response of systems in steady
state at, or close to, equilibrium is described by the seminal
fluctuation-dissipation relation [4,5]. Generalizations to
study the response of systems in nonequilibrium steady
state are a more recent endeavor, in particular since the
advent of stochastic thermodynamics [6–16]. Under-
standing the response of far-from-equilibrium systems is
of great conceptual but also practical importance (e.g., to
characterize homeostasis, design resilient nanotechnolo-
gies, detect critical transitions, and for metabolic control).
Progress in this direction relies on our ability to derive useful
expressions for static responses, and possibly derive practi-
cally meaningful bounds for them.
In this Letter, we study the static response of Markov

jump processes within stochastic thermodynamics. In this
context, Ref. [17] constitute a frontier. The authors studied
the response to perturbations of the energy landscape
parameters. They derived an exact result and two bounds
using graph-theoretic methods, which can be quite tedious
and nonintuitive to use [18–20]. We develop a novel
approach based on simple linear algebra, which allows
us to go significantly further than currently known results.
We first derive a simple and elegant expression for the static
response to arbitrary perturbations. We use it to straight-
forwardly reproduce the main result [17] for the static
response to perturbations of the energy landscape. But
more importantly we also use it to derive novel and simple
expressions for the response of edge currents and traffic to
kinetic barriers and driving forces perturbations. We
furthermore derive four remarkably simple bounds for
these four quantities (see Table I), which can be added
to the list of simple bounds valid far-from-equilibrium,
together with thermodynamic uncertainty relations [21,22]
and speed limits [23].

Setup.—We consider a Markov jump process over a
discrete set of N states. Transitions between these states
are described by the rate matrix W=τ, where the element
Wnm=τ ≥ 0 defines the probability per unit time τ to jump
from state m to state n. Below we choose τ ¼ 1, to
adimensionalize the matrix W. The diagonal elements are
defined asWii ¼ −

P
j≠i Wij.We assume that all transitions

are reversible, i.e., Wij ≠ 0 only if Wji ≠ 0 and that the
matrixW is irreducible [24]. This ensures the existence of a
unique steady-state probability π ¼ ðπ1;…; πNÞ⊺ satisfying

W · π ¼ 0; ð1Þ

where
P

N
i¼1 πi ¼ 1. When the rates depend on a model

parameter η, one can define the static response of the
nonequilibrium state as ∂ηq for an arbitrary quantity q.
We also define the sensitivity as ∂η ln q≡ q−1∂ηq to ensure
that it remains well defined when q becomes negative.
General theory.—The rate matrix W in Eq. (1) has

only one zero eigenvalue [24]. This allows us to rewrite
Eq. (1) as

Kn · π ¼ en; ð2aÞ

Kn ¼

1
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.

n− 1

n
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where en denotes the vector with a 1 for the nth element and
0’s elsewhere, and where the matrix Kn coincides with the
rate-matrixW except the nth row. SinceW is irreducible, it
has a single zero eigenvalue and N − 1 nonzero ones with
Re λi < 0. In Appendix A, we show that the determinant of
Kn can be expressed in terms of the nonzero eigenvalues of
W (see also Ref. [25]):

D ¼ detKn ¼
YN−1

i¼1

λi ≠ 0: ð3Þ

Despite the fact that the matrixKn depends on the choice of
index n, its determinant D ¼ detKn does not [see Eq. (3)].
Since D ≠ 0, Kn is invertible and we can solve Eq. (2a):

π ¼ K−1
n · en: ð4Þ

To find the linear response ∂ηπ we calculate the derivative
∂η of Eq. (2a), ∂η½KnðηÞ · πðηÞ� ¼ 0, and get

Kn · ∂ηπ ¼ −∂ηKn · π: ð5Þ

Solving Eq. (5), we arrive at the desired result:

∂ηπ ¼ −K−1
n · ∂ηKn · π: ð6Þ

Equation (6) will be central in what follows. Indeed, it
provides a linear algebra-based method to calculate differ-
ent nonequilibrium responses, which is much simpler and
direct than methods based on graph theory representations
of π. At this stage, Eq. (6) holds for any dependence of
WðηÞ on the control parameter.
Rate-matrix model.—To proceed, we follow Ref. [17]

and parametrize the nondiagonal elements of the rate
matrix as

Wij ¼ e−ðBij−Ej−Fij=2Þ; ð7Þ

where Ej are the vertex parameters, Bij ¼ Bji are the
symmetric edge parameters, and Fij ¼ −Fji are the anti-
symmetric edge parameters. Equation (7) is reminiscent of
Arrhenius rates that characterize the transition rates of a
system in an energy landscape with wells with bottom
energy Ej, connected to other wells via barriers of heights
Bij, and subjected to nonconservative driving forces Fij

along the transition paths [26]. These rates satisfy local

detailed balance ensuring the compatibility with stochastic
thermodynamics [26–28].
Vertex parameters.—To calculate ∂En

π, we note that
only the nth column of the matrix Kn depends on En.
Therefore,

∂En
Kn ¼

n

1

..

.

n − 1

n

nþ 1

..

.
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0
BBBBBBBBBBBBBBB@
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..

.

Wn−1;n
0

Wn−1;n
..
.

WN;n

1
CCCCCCCCCCCCCCCA

; ð8Þ

where all columns but the nth one are zero. The element
ðn; nÞ is zero because Kn;n ¼ 1. Here and below, empty
spaces in matrices denote zeros. Inserting Eq. (8) into
Eq. (6), we immediately recover a key result of Ref. [17]
obtained using nontrivial graph-theoretical methods,
namely

∂En
π ¼ −πnK−1

n · ðKn − enÞ ¼ −πnðen − πÞ; ð9Þ

where Kn is the nth column of Kn and where we
used Eq. (4).
Symmetric edge parameters.—We proceed with calcu-

lating ∂Bnm
π. One can see from Eq. (7) that such a

perturbation changes Wnm and Wmn. These rates are also
contained in the diagonal elements of the matrix W since
Wnn ¼ −

P
m≠n Wmn. Overall four elements depend on

Bnm:Wnm,Wnn,Wmn, andWmm. But the matrix Kn defined
in Eq. (2b) only contains two of those elements because the
nth row is made of ones (Knm ¼ 1 and Knn ¼ 1). This is
why matrix Kn is convenient to study the perturbations of
the edge ðn;mÞ. Using Eq. (7), their derivatives reads
∂Bnm

Wmn ¼ −Wmn and ∂Bnm
Wmm ¼ −∂Bnm

Wnm ¼ Wnm,
and we find that

TABLE I. The central and right columns correspond to the response of the current and traffic, respectively. The
central and bottom rows are perturbations of the symmetric and antisymmetric edge parameters, respectively.

Control Current, Jnm Traffic, τnm

Bnm −1 ≤ ð∂ ln Jnm=∂BnmÞ ≤ 0 −2 ≤ ð∂ ln τnm=∂BnmÞ ≤ 0
Fnm 0 ≤ ð2=τnmÞð∂Jnm=∂FnmÞ ≤ 1 −1 ≤ ð∂ ln τnm=∂FnmÞ ≤ 1
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∂Bnm
Kn ¼

1 … n … m … N
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−Wmn Wnm

1
CCCCCCCCA

: ð10Þ

Calculating ð∂Bnm
KnÞ · π and inserting into Eq. (6) we get

∂Bnm
π ¼ −K−1

n · emðWnmπm −WmnπnÞ ¼ −
κnm

D
Jnm; ð11Þ

where we recognize the current Jnm ¼ Wnmπm −Wmnπn
from m to n, and where κnm=D is the vector with the
elements from themth column of the matrixK−1

n . Below we
abuse notation for the vector κ ¼ κnm, which depends on
the choice of the indexes n and m. The elements κi can be
defined in terms of the minors MimðK⊺

nÞ of the matrix K⊺
n:

κi ¼ ð−1ÞiþmMimðK⊺
nÞ ¼ ð−1ÞiþmMmiðKnÞ: ð12Þ

Since the minors MmiðKnÞ do not include the mth row of
the matrix Kn, the elements κi do not depend on Bnm and
Fnm [see Eq. (2b)].
Equation (11) is a new result. In Ref. [17], only the

following bound was obtained: j∂Bnm
πij ≤ πið1 − πiÞ

tanhðFmax=4Þ, where Fmax is the maximum absolute value
of the affinity along all cycles containing the edge ðn;mÞ. A
numerical comparison between the two is given in
Appendix B; see Fig. 1. A direct implication of our result
is that the response is suppressed, ∂Bnm

π ¼ 0, when the
edge ðn;mÞ is detailed balanced Jnm ¼ 0. Instead, ensuring
the suppression of the response from the bound [17],
implies the more restrictive condition Fmax ¼ 0, which
corresponds to equilibrium where all edge currents vanish.
An example where an edge current vanishes while the
forces are nonzero is provided in Appendix B. They have
also been shown to produce “Green-Kubo-like” fluc-
tuation-dissipation relations [9].
Antisymmetric edge parameters.—We now calculate

∂Fnm
π from Equation (6). The nonzero elements of ∂Fnm

Kn

are ∂Fnm
Wmn ¼ −Wmn=2 and ∂Fnm

Wmm ¼ −∂Fnm
Wnm ¼

−Wnm=2:

∂Fnm
Kn ¼

1 … n … m … N

1

..

.

m

..

.

N

0
BBBBBBBB@

−Wmn=2 −Wnm=2

1
CCCCCCCCA

: ð13Þ

Using Eq. (6), we arrive at

∂Fnm
π ¼ K−1

n · em
Wnmπm þWmnπn

2
¼ κ

D
τnm
2

; ð14Þ

where τnm ¼ Wnmπm þWmnπn is the edge traffic (related
to the expected escape rate, activity, and frenesy [29]). In
Ref. [17], only the following bound was obtained
j∂Fnm

πij ≤ πið1 − πiÞ.
Responses of current and traffic.—Using Eqs. (11) and

(14), the sensitivities of the edge currents read

∂Bnm
ln Jnm ¼ −1þ Δnm; ð15aÞ

∂Fnm
ln Jnm ¼ τnm

Jnm

ð1 − ΔnmÞ
2

; ð15bÞ

Δnm ¼ Wmnκn −Wnmκm
D

: ð15cÞ

Similarly, the sensitivities of edge traffic read

∂Bnm
ln τnm ¼ −1 −

Jnm
τnm

∇nm; ð16aÞ

∂Fnm
ln τnm ¼ 1

2

�
Jnm
τnm

þ∇nm

�
; ð16bÞ

∇nm ¼ Wmnκn þWnmκm
D

: ð16cÞ

FIG. 1. Inset: example of the network with 4 states; F1 and F2

denote the forces in the cycles 1 − 2 − 3 − 1 and 1 − 3 − 4 − 1,
respectively. Main: the solid curves show the responses ∂B13πi
from Eq. (11) scaled to πið1 − πiÞ, where i ¼ 1, 2, 3, 4
correspond to blue, orange, green, and red colors, respectively.
In these coordinates, the dashed lines [� tanhðFmax=4Þ] corre-
spond to the bound from [17]. Black arrow indicates J13 ¼ 0.
Simulation parameters: the nondiagonal and nonzero elements of
W are W21 ¼ 1, W31 ¼ e−B13−F13=2, W41 ¼ 1, W12 ¼ 10,
W32 ¼ 1, W13 ¼ e−B13þF13=2, W23 ¼ 5, W43 ¼ 10, W14 ¼ 10,
and W34 ¼ 10, where B13 ¼ 1. The forces in the inset are
F1 ¼ F13 − ln 50, F2 ¼ F13 − ln 5, which give jF1j ¼ jF2j at
F13 ≈ 3.1.
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These two results, Eqs. (15) and (16), are important because
they provide explicit algebraic expressions for the response.
Indeed, the variables Δnm and ∇nm defined in Eqs. (15c)
and (16c) do not depend on πi. They depend only on the
elements in the minors ðm; nÞ and ðm;mÞ of the matrix Kn.
Equations (15) and (16) depend on πi implicitly via the
current and traffic. However, Jnm and τnm can be defined
from empirical measurements of the trajectories.
Bounds and discussion.—Another important result is that

simple bounds can be obtained for Eqs. (15) and (16).
They are given in Table I and bound the sensitivities
∂η ln q for all combinations of q ¼ fJnm; τnmg and
η ¼ fBnm; Fnmg. In Appendix C, we derive the following
bounds for Δnm and ∇nm,

0 ≤ Δnm ≤ 1; ð17aÞ

j∇nmj ≤ Δnm ≤ 1; ð17bÞ

which can be used to prove all bounds in Table I. Indeed,
inserting Eq. (17a) into Eqs. (15a) and (15b) we get two
tight bounds for the current Jnm in Table I. Using
Eqs. (16a), (16b), and (17b), we derive two tight bounds
for the traffic

���� τnmJnm

�
∂ ln τnm
∂Bnm

þ 1

����� ≤ 1; ð18aÞ
���� 2∂ ln τnm

∂Fnm
−
Jnm
τnm

���� ≤ 1: ð18bÞ

The simpler bounds for τnm shown in Table I are not
tight anymore. They are obtained using Eq. (17b) and
jJnm=τnmj ≤ 1 in Eqs. (16a) and (16b). To discuss the
saturation of the tight bounds in Table I and Eq. (18), we
consider one of them:

−1 ≤ ∂Bnm
ln Jnm ≤ 0: ð19Þ

The upper bound in Eq. (19) is simple to understand: a
higher energy barrier (Bnm) always results in a lower
absolute value of the current between states n and m.
This bound is saturated at Δnm ¼ 1, when the current
response vanishes [see Eq. (15a)]. The value of Δnm is
defined by the topology of the network and the elements of
the matrix W (kinetic parameters). By changing them, one
can reduce the response of the current. Numerical simu-
lations from Fig. 2(a) shows the existence of configurations
with Δnm ≈ 1. To reach the lower bound in Eq. (19), one
needs Δnm ¼ 0. However, in Appendix C we prove that
Δnm ¼ 0 only if Wnm ¼ Wmn ¼ 0 or κm ¼ κn ¼ 0, where
the former condition is equivalent to Jnm ¼ 0. Therefore,
excluding the case κm ¼ κn ¼ 0, the lower bound of
Eq. (19) can be saturated only for a zero current. This is
illustrated by the numerical simulations shown in Fig. 2,

where the set of possible values ∂Bnm
ln Jnm touches the

edge −1 only at one point Jnm ¼ 0. The bound for the
sensitivity ∂Fnm

ln Jnm has the same properties as Eq. (19).
The bounds in Eq. (18) saturate at ∇nm ¼ �1, which
implies Δnm ¼ 1; see Eq. (17b).
Future studies.—Our first main result Eq. (6) provides a

general algebraic expression of a static response with
respect to any parametrization of the rate matrix. Our other
results rely on the Arrhenius-like form (7) of the rates,
which allows us to perturb isolated edges. This para-
metrization is directly relevant for instance for barrier
crossing in the low noise limit, for enzymatic reactions,
and for quantum dots. In these examples, the edge
parameter is given, respectively, by the height of the
barrier [26], the concentration of enzyme [30], or the
tunneling rates [31]. Its relevance for chemically driven
(e.g., via ATP hydrolysis) unimolecular chemical reaction
networks is explained in Supplemental Material [32]. But
our methodology can also be extended to more general rate
matrices. For instance, when nonconservative forces act on
multiple edges [16,27], a perturbation of the force f will
imply that the matrix ∂fKn has only nonzero elements ði; jÞ
on the edges ði; jÞ carrying f. Particular topologies of the
rate matrix may still make analytical calculations of Eq. (6)
possible. An example is the CMOS inverter of Ref. [37]
described by a tridiagonal rate matrix. It could also be
used to study the stationary responses of other physical
observables (beyond currents and activities) [38,39], as
well as to study time-dependent “Green-Kubo-Agarwal-
like” relations [7,11]. We considered reversible transitions.
Perturbations of Bnm and Fnm for an irreversible transition
(Wmn ¼ 0) give rise to a single nonzero element with-
index ðm; nÞ in Eqs. (10) and (13). A similar modification
can be performed for systems without a local detailed

FIG. 2. (a)–(d) Illustrations of the bounds of Jnm from Table I
and τnm from Eq. (18). The dashed lines show the corresponding
bounds. The dots are the result of numerical calculations for 20
000 random matrices W with the elements defined by Eq. (D1).
The network corresponds to the inset in Fig. 1.
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balance condition, where the elements Wij and Wji are
independent.

This research was funded by project ChemComplex
(C21/MS/16356329) funded by Fonds National de la
Recherche—FNR, Luxembourg. We thank Massimo
Bilancioni for detailed feedback on our manuscript.

Appendix A: Derivation of Eq. (3).—We derive
Eq. (3). Our strategy is to first find a solution for π
assuming that D ≠ 0. Then, since W is an irreducible
rate matrix, the vector π is unique, and this allows us to
validate our assumption. The matrix Ki can be
transformed into Kj by linear operations with the rows,
which preserve the determinant (detKi ¼ detKj). To
find the ith element of the vector π, we use Cramer’s
rule for the matrix Ki in Eq. (2a), which gives us
πi ¼ ð−1ÞiþiMiiðK⊺

i Þ=D ¼ MiiðWÞ=D, where MiiðAÞ are
principal minors of order N − 1 for the matrix A, and
where we use MiiðK⊺

i Þ ¼ MiiðWÞ. Since
P

N
i¼1 πi ¼P

N
i¼1MiiðWÞ=D ¼ 1, we find that D is the sum of the

principal minors of the matrix W. On the other hand,
the sum of the principal minors of W can be written in
terms of its eigenvalues using elementary symmetric
polynomials of order N − 1 (see p. 494 in [40]):

D ¼
XN
i¼1

MiiðWÞ ¼
X

1≤i1<…<iN−1≤N
λi1…λiN−1: ðA1Þ

Using the fact that W has a single zero eigenvalue
(irreducible rate matrix), the right-hand side of Eq. (A1)
contains only one term, which corresponds to Eq. (3)
and shows that D ≠ 0.

Appendix B: Example of network.—In Fig. 1, we
consider the responses ∂B13

πi with i ¼ 1;…; 4, for the
network given in the inset, and compare it to the bound
j∂Bnm

πij ≤ πið1 − πiÞ tanhðFmax=4Þ obtained in [17]. We
see that J13 can vanish even at nonzero value
Fmax ¼ maxðjF1j; jF2jÞ ≠ 0. In other words, the system is
out of equilibrium but the edge 1–3 is detailed balanced.

Appendix C: Proof of bounds in Eq. (17).—We prove
the bounds in Eq. (17). The determinant D ¼ detKn on
the mth row of the matrix Kn can be written as

D ¼ ð−1ÞmþnWmnMmnðKnÞ þ ð−1ÞmþmWmmMmmðKnÞ
þ

X
i≠m;n

ð−1ÞiþmWmiMmiðKnÞ: ðC1Þ

Using Eqs. (12) and (C1) we find an explicit dependence
of D on the parameters Bnm and Fnm as follows:

DðBnm;FnmÞ¼WmnðBnm;FnmÞκn−WnmðBnm;FnmÞκmþC;

ðC2Þ

where C denotes the sum of all terms that do not depend
on Bnm and Fnm. From Eq. (3) we have that the sign of
the determinant sgnD ¼ ð−1ÞN−1 is fixed and does not
depend on Bnm and Fnm. Using the fact that C does not
depend on Bnm, we can determine the sign of C from
Eq. (C2) in the limit Bnm → ∞, where Wnm;Wmn → 0:

sgnC ¼ lim
Bnm→∞

sgnD ¼ ð−1ÞN−1: ðC3Þ

Using the fact that the signs of C and detKn are the
same, we can rewrite Eq. (15c) using Eq. (C2) as

Δnm ¼ 1−
���� CD

����; ðC4Þ

which gives us the upper bound in Eq. (17a).
In the case κn ¼ 0, κm ¼ 0, Eqs. (15c) and (16c) satisfy

the bounds (17a) and (17b). Considering κn ≠ 0 and
κm ≠ 0, the following limits of Eq. (C2) hold:

lim
Bnm→−∞

Wmnκn −Wnmκm
D

¼ 1; ðC5aÞ

lim
Fnm→∞

Wnmκm
D

¼ −1; ðC5bÞ

lim
Fnm→−∞

Wmnκn
D

¼ 1: ðC5cÞ

Since sgnðWmnκn= detKnÞ and sgnðWnmκm= detKnÞ are
fixed, we can find them using Eqs. (C5b) and (C5c):

sgn

�
Wmnκn
detKn

�
¼ lim

Fnm→−∞

Wmnκn
D

¼ 1; ðC6aÞ

sgn

�
Wnmκm
detKn

�
¼ lim

Fnm→∞

Wnmκm
D

¼ −1: ðC6bÞ

Equation (15c) and (C6) imply thatΔnm ≥ 0 that proves the
lower bound in Eq. (17a). Combining this bound with
Eq. (C4), we derive the inequalities (17a).
We use Eq. (C6) to write

κnκm < 0: ðC7Þ

The lower bound in Eq. (17a) is saturated only when
Wnm ¼ Wmn ¼ 0, while for Wnm ≠ 0 the condition
in Eq. (C7) implies Δnm ≠ 0. The upper bound in
Eq. (17a) is saturated in the limit Bnm → −∞ [see
Eqs. (15c) and (C5a)], as well as when C ¼ 0.
To find bounds for ∇nm, we rewrite it as follows:

∇nm ¼ Δnm
Wmnκn þWnmκm
Wmnκn −Wnmκm

: ðC8Þ
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If Wmnκn ¼ 0, then ∇nm ¼ −Δnm, otherwise we have

∇nm ¼ Δnm
1þ a
1 − a

; where a ¼ Wnmκm
Wmnκn

≤ 0: ðC9Þ

Since jð1þ aÞ=ð1 − aÞj ≤ 1 for a ≤ 0, we find Eq. (17b).
In the case κn ¼ 0, κm ≠ 0 (respectively, κn ≠ 0,

κm ¼ 0), we derive Eq. (17a) using Eq. (C4) and
Eq. (C6b) [respectively, Eq. (C6a)]; and we have ∇nm ¼
−Δnm (resp. ∇nm ¼ Δnm).

Appendix D: Numerical simulations.—In Fig. 2, we
numerically verify the bounds in Table I and Eq. (18)
using random generated rate matrices for the network
shown in the inset of Fig. 1. We generated the matrix W
using random numbers ωij with a homogeneous distribu-
tion in the range 0 < ωij ≤ ωmax, where ωmax ¼ 100. All
nondiagonal elements Wij with i ≠ j are defined as

Wij ¼

8>>>><
>>>>:

0; i¼ 2; j¼ 4; and i¼ 4; j¼ 2;

ω13e−B13þF13=2; i¼ 1; j¼ 3;

ω31e−B13−F13=2; i¼ 3; j¼ 1;

ωij; else:

ðD1Þ

To calculate the responses, we take the values F13 and B13

randomly within the range ð−r; rÞ, where r ¼ 3.
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