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Excitons consist of electrons and holes held together by their attractive Coulomb interaction. Although
excitons are neutral excitations, spatial fluctuations in their charge density couple with the ions of the
crystal lattice. This coupling can lower the exciton energy and lead to the formation of a localized excitonic
polaron or even a self-trapped exciton in the presence of strong exciton-phonon interactions. Here, we
develop a theoretical and computational approach to compute excitonic polarons and self-trapped excitons
from first principles. Our methodology combines the many-body Bethe-Salpeter approach with density-
functional perturbation theory and does not require explicit supercell calculations. As a proof of concept,
we demonstrate our method for a compound of the halide perovskite family.

DOI: 10.1103/PhysRevLett.132.036902

One of the most striking manifestations of electron-
phonon interactions in solids is the formation of polarons.
These quasiparticles form when an electron creates a small
distortion of the surrounding crystal lattice, which in turn
acts as a potential well that promotes electron localization
[1]. Polarons have been investigated extensively in a wide
variety of materials, including alkali halides [2–5], metal
oxides [6–9], hybrid perovskites [10–13], and two-dimen-
sional materials [14].
A similar feedbackmechanismbetween charge and lattice

can occur for neutral excitations such as excitons [15,16].
While the exciton is charge neutral overall, local spatial
fluctuations of its electron and hole charge densities can
induce lattice distortions as in the case of polarons. In turn,
these distortions can stabilize the exciton and promote its
localization. The resulting quasiparticle is referred to as an
excitonic polaron [17]. In the presence of strong exciton-
phonon interactions, the same mechanism can lead to the
formation of self-trapped excitons [18–22].
Excitonic polarons are often invoked to explain large

Stokes shifts observed between absorption and lumines-
cence spectra [19,20,23]. In these cases, the photolumi-
nescence redshift is interpreted as the result of the lattice
relaxation in the optically excited state, within a Franck-
Condon picture [24]. These conceptual models are ubiqui-
tous in solid-state spectroscopy and have been in use for
decades, but detailed ab initio calculations remain exceed-
ingly rare [25–28]. The main difficulties are that (i) calcu-
lations of Hellmann-Feynman forces in the excited state
using the Bethe-Salpeter equation (BSE) approach are
challenging [26]; (ii) since exciton localization breaks
the translational invariance of the crystal unit cell, BSE
calculations on large supercells are needed [19], and this
poses a significant computational challenge.

Here, we develop an ab initio theoretical and com-
putational method for calculating excitonic polarons and
self-trapped excitons without resorting to supercells.
Following a strategy similar in spirit to previous work
on polarons [2,14,29–31], we express the wave function of
the excitonic polaron as a coherent superposition of finite-
momentum excitons, and we recast the BSE total energy
functional in the excited state as a self-consistent eigen-
value problem in the exciton coefficients. Alongside the
excitonic wave function, our present approach provides the
accompanying atomic displacements and their spectral
decomposition into normal vibrational modes, thereby
offering a detailed picture of the excitonic polaron and
the atomic-scale mechanisms that drive its formation. To
demonstrate this method, we investigate excitonic polarons
in Cs2ZrBr6, a vacancy-ordered double perovskite that
attracted interest in the context of energy-efficient lighting
and that exhibits signatures of exciton self-trapping [23,32].
Additional ab initio calculations of excitonic polarons in
LiF, applications to model Hamiltonians, and a more in-
depth analysis of the theoretical formalism are presented in
the companion paper [33].
The total energy of a crystal in a neutral excited state can

be expressed as [26]

E½Ψðre; rhÞ; fΔτκαpg�

¼ E0 þ
Z
sc
Ψ�ðre; rhÞHBSEðre; rh; r0e; r0hÞΨðr0e; r0hÞdr

þ 1

2

X
καp
κ0α0p0

Cκαp;κ0α0p0ΔτκαpΔτκ0α0p0 ; ð1Þ

where E0 denotes the ground-state energy with the
atoms in their equilibrium positions, HBSE is the BSE
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Hamiltonian [15,16], and Ψðre; rhÞ is the exciton wave
function, with re and rh denoting the electron and hole
coordinates, respectively. The integral extends over the
Born–von Kármán (BvK) supercell, and the integration
variable dr is a shorthand notation for dredrhdr0edr0h.
Cκαp;κ0α0p0 denotes the matrix of interatomic force con-
stants, and Δτκαp is the displacement of the atom κ in the
unit cell p along the Cartesian direction α, with respect to
the ground-state structure. The term on the last line of
Eq. (1) describes the elastic energy associated with the
lattice distortion. The energy functional is truncated to the
second order in the displacements; this approximation
proved successful in calculations of both small and large
polarons, comparing well with direct hybrid-functional
calculations [2,14,29–31]. In Eq. (1), the BSE Hamiltonian
and wave functions depend implicitly on the atomic
positions, and the interatomic force constants are assumed
to be the same for the ground and excited states. This
approximation was shown to be reliable for large and small
polarons [29].
To obtain the exciton wave function and the atomic

displacements that minimize the total energy in Eq. (1), we
use the method of Lagrange multipliers and set to zero the
functional derivatives of E½Ψðre; rhÞ; fΔτκαpg� with respect
to Ψðre; rhÞ and fΔτκαpg, subject to the normalization
constraint

R
sc jΨðre; rhÞj2dredrh ¼ 1. After some algebra,

we arrive at the following coupled nonlinear eigenvalue
problem:

Z
sc
H0

BSEðre; rh; r0e; r0hÞΨðr0e; r0hÞdr0edr0h

þ
X
καp

Z
sc

∂H0
BSEðre; rh; r0e; r0hÞ

∂τκαp
Ψðr0e; r0hÞdr0edr0hΔτκαp

¼ εΨðre; rhÞ; ð2Þ

Δτκαp ¼ −
X
κ0α0p0

C−1
καp;κ0α0p0

×
Z
sc
Ψ�ðre; rhÞ

∂H0
BSEðre; rh; r0e; r0hÞ

∂τκ0α0p0
Ψðr0e; r0hÞdr;

ð3Þ

where H0
BSE is the BSE Hamiltonian for the undistorted

system, and the eigenvalue ε is the Lagrange multiplier.
To solve Eqs. (2) and (3) without resorting to supercells,

we express Ψðre; rhÞ as a linear combination of exciton
states ΩsQðre; rhÞ of the undistorted ground-state structure,
and we express the displacements Δτκαp as a linear
combination of normal vibrational modes of the undistorted
structure,

Ψðre; rhÞ ¼
1ffiffiffiffi
N

p
X
sQ

AsQΩsQðre; rhÞ; ð4Þ

Δτκαp ¼ −
2

N

X
qν

Bqν

�
ℏ

2Mκωqν

�
1=2

eκα;νðqÞeiq·Rp : ð5Þ

In these expressions, s is the exciton band index, Q is the
exciton momentum, and N is the number of unit cells in the
BvK supercell. Mκ is the mass of atom κ, eκα;νðqÞ is
polarization vector of the phonon with momentum q,
branch ν, and frequency ωqν; Rp is the lattice vector of
the pth unit cell in the BvK supercell [34]. The sums are
carried out over uniform Brillouin zone grids withN points.
The expansion coefficients AsQ and Bqν in Eqs. (4) and (5)
can be interpreted as the contribution of each exciton and
each phonon of the undistorted lattice to the excitonic
polaron, respectively.
The exciton states of the undistorted lattice appearing in

Eq. (4), ΩsQðre; rhÞ, can be expressed in terms of Kohn-
Sham single-particle states. To this end, we employ the
Tamm-Dancoff approximation [16,35],

ΩsQðre; rhÞ ¼
X
vck

asQvckψ
�
vkðrhÞψckþQðreÞ; ð6Þ

where ψnkðrÞ are Kohn-Sham eigenstates of the undistorted
ground state, v and c refer to valence and conduction bands,
respectively, and the coefficients asQvck denote the eigen-
vectors of the ground-state BSE Hamiltonian H0

BSE, with
eigenvalue E0

sQ.
Upon substituting Eqs. (4)–(6) inside Eqs. (2) and (3),

we obtain a coupled nonlinear system of equations for the
coefficients AsQ and Bqν,

X
s0Q0

�
E0
sQδss0δQQ0 −

2

N

X
ν

BQ−Q0νGss0νðQ0;Q −Q0Þ
�

× As0Q0 ¼ εAsQ; ð7Þ

BQν ¼
1

NℏωQν

X
ss0Q0

A�
s0Q0AsQ0þQG�

ss0νðQ0;QÞ; ð8Þ

having introduced the exciton-phonon coupling matrix
element [36,37]

Gss0νðQ;qÞ ¼
X
vck

asQþq�
vck

�X
c0
gcc0νðkþQ;qÞas0Qvc0k

−
X
v0
gv0vνðk;qÞas

0Q
v0ckþq

�
: ð9Þ

In this expression, gmnνðk;qÞ is the standard electron-
phonon coupling matrix element between the Kohn-Sham
states nk and mkþ q via the phonon qν [34].
Equations (7) and (8) constitute the central result of this

Letter. The solution of these equations describes the
formation of excitonic polarons and self-trapped excitons
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via the exciton-phonon interaction. All quantities appear-
ing in Eqs. (7)–(9) can be obtained from calculations
performed in the crystal unit cell, without requiring
supercells. The breaking of lattice periodicity comes from
the coherent superposition of exciton states with different
momenta. The largest size of the exciton polaron that can
be studied is set by the BvK supercell, which in the present
formalism translates into the numberN of grid points in the
Brillouin zone.
The dissociation energy of the excitonic polaron into a

fully delocalized free electron-hole pair is EGW
gap − Exp,

where Exp is given by

Exp ¼
1

N

X
sQ

jAsQj2E0
sQ −

1

N

X
qν

jBqνj2ℏωqν: ð10Þ

The first term on the right-hand side of this equation
represents the average energy of the exciton states partici-
pating to the excitonic polarons; the second term is the
stabilization energy resulting from the lattice distortion.
Similarly, the formation energy of the excitonic polaron is
ΔExp

f ¼ Exp − E0
ex, where E0

ex is the energy of the lowest-
lying exciton.
To demonstrate the present methodology, we consider

the vacancy-ordered halide double perovskite Cs2ZrBr6 as
a test system. All calculations details are described in the

Supplemental Material [38]. Cs2ZrBr6 crystallizes in the
Fm3̄m space group and consists of a rock-salt lattice of
alternating ðZrB6Þ2− octahedra and vacancies, with Cs1þ
cations acting as spacers, see Supplemental Material
Fig. S1 [38]. Optical absorption and photoluminescence
spectra of this perovskite reveal a large Stokes shift, which
has tentatively been assigned to the presence of self-trapped
excitons [23,32].
In agreement with the experimental proposal, we do find

a highly localized excitonic polaron in Cs2ZrBr6. Figure 1
shows the charge densities of the electron polaron, the hole
polaron, and the excitonic polaron in Cs2ZrBr6. We find
small electron and hole polarons; in particular, the electron
polaron in Fig. 1(a) primarily consists of a single Zr 4d
orbital of t2g character (dxz and dyz), while the hole polaron
in Fig. 1(b) is derived from a single Br 4p orbital. Our
findings are consistent with the Zr d and Br p characters of
the conduction and valence band edges, respectively
(Supplemental Material Fig. S2 [38]). The highly localized
nature of polarons reflects the weakly interacting nature of
ZrBr6 octahedra in the vacancy-ordered double perovskite
structure [32]. In Figs. 1(c) and 1(d) we show the electron
density and the hole density in the excitonic polaron state,
respectively, which are given by neðreÞ¼

R
sc jΨðre;rhÞj2drh

and nhðrhÞ ¼
R
sc jΨðre; rhÞj2dre. As for the polarons, the

charge densities of the excitonic polaron are localized in

FIG. 1. Charge density isosurfaces of electron polaron, hole polaron, exciton polaron, and excitons in Cs2ZrBr6. The atomic color
code is as follows: Cs, purple; Zr, cyan; Br, brown. (a) Charge density isosurface of the electron polaron (yellow). (b) Charge density
isosurface of the hole polaron (dark blue). (c) Electron density isosurface neðreÞ of the excitonic polaron (yellow). (d) Hole density
isosurface nhðrhÞ of the excitonic polaron (dark blue). (e) Electron density isosurface of the lowest energy exciton (dark) of Cs2ZrBr6 in
the ground-state undistorted structure (light blue). (f) Electron density isosurface of the bright exciton corresponding to the first
absorption peak of Cs2ZrBr6, as shown in Fig. S4(a) [38], in the ground-state undistorted structure (light blue). (e),(f) The hole position
rh is chosen to coincide with a Br atom.
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real space. By comparing Figs. 1(b) and 1(d), we see that
the hole density is distributed among all six Br atoms of a
ZrBr6 octahedron, unlike the hole polaron, which is
localized on a single atom.
Localization is a distinctive feature of the excitonic

polaron, whereas free excitons in the undistorted structure
are fully delocalized. In fact, using Eq. (6) and the ortho-
gonality of Kohn-Sham states, it is immediate to see that the
charge densities of the excitons in the ground-state structure,R
sc jΩsQðre; rhÞj2drh and

R
sc jΩsQðre; rhÞj2dre, are lattice

periodic. This observation is consistent with the fact
that, to plot the exciton wave function, one must fix the
position of the hole to obtain a localized electron charge
distribution [39]. This type of plot is shown in Figs. 1(e)
and 1(f) for the excitons in Cs2ZrBr6.
Figure 2 and Supplemental Material Fig. S3 [38] show

the atomic displacements accompanying the electron
polaron, the hole polaron, and the excitonic polaron in
Cs2ZrBr6. The electron polaron, which is localized on the
Zr atom, tends to attract the eight positively charged
nearest-neighbor Cs cations in a symmetric pattern
[Fig. S3(a) [38] ]. Conversely, the hole polaron, which is
centered on a Br atom, tends to repel a single positively
charged nearest-neighbor Zr cation [Fig. S3(b) [38] ]. The
atomic displacement pattern of the excitonic polaron,
shown in Fig. 2(a), resembles the pattern for the electron
polaron in Fig. S3(a), but additionally includes significant
displacements of the nearest-neighbor Br atoms surround-
ing the central Zr atom. This behavior can be rationalized
by noting that, due to the crystal symmetry of Cs2ZrBr6, the
hole polaron shown Fig. 1(b) and Fig. S3(b) is only one of
the six degenerate solutions localized at the six Br atoms,
respectively, and when forming the excitonic polaron, the
six degenerate solutions contribute to making the hole
density of the excitonic polaron carry the approximate
spherical symmetry around the Zr atom.

Our present formalism allows us to identify the phonon
modes that are responsible for the formation of the
excitonic polaron. Figure 2(b) shows the magnitude of
the coefficients jBqνj2 overlaid on the phonon dispersion
relations of Cs2ZrBr6. The dominant contributions arise
from the phonon branches associated with the A1g mode at
23.2 meV and the T1u mode at 6.2 meV. The former is the
octahedral breathing mode [Fig. 2(c)], and the latter
corresponds to displacements of the Cs atoms [Fig. 2(d)].
This decomposition is consistent with the atomic displace-
ment patterns shown in Fig. 2(a). We emphasize that, while
the largest atomic displacements occur for the Br atoms that
are nearest neighbors to the central Zr atom, we find
significant atomic displacements of Cs atoms in more
distant neighbors within other unit cells. This result under-
scores the importance of being able to perform this type of
calculation on large supercells, such as the 576-atoms
equivalent supercell that we can access in the present study
by solving Eqs. (7) and (8). Performing direct BSE
calculations on such large unit cells would be prohibitive
using existing methods [25–28].
We now compare the formation energies for electron,

hole, and excitonic polarons, as shown in Fig. 3. Figure 3(a)
shows a schematic illustration of the many-body quasipar-
ticle energy diagram; Fig. 3(b) shows the corresponding
many-body BSE diagram for neutral excitations (exciton
band structures and the BSE absorption coefficients are
shown in Supplemental Material Fig. S4 [38] for com-
pleteness). We see that the electron and hole polaron have
relatively large formation energies (302 and 550 meV,
respectively) that can be rationalized in terms of the heavy
electron and hole effective masses [29,32]; instead, the
formation energy of the excitonic polaron is of one
magnitude smaller (48 meV). In line with this weaker
formation energy, we observe that the charge densities of

FIG. 2. Atomic displacements accompanying the excitonic polaron of Cs2ZrBr6. We only display significant displacements for
clarity. The atomic color code is as follows: Cs, purple; Zr, cyan; Br, brown. (a) Atomic displacements (blue arrows) associated with
the excitonic polaron, whose electron and hole charge densities are shown in Figs. 1(c) and 1(d), respectively. (b) Phonon
contribution to the formation of the excitonic polaron. Black lines are the phonon dispersion relations, and the yellow discs are
proportional to jBqνj2. (c) Eigendisplacements of the A1g mode at 23.2 meV at the zone center. (d) Eigendisplacements of the T1u

mode at 6.2 meV at the zone center. (c),(d) Only one octahedron and one Cs atom are displayed, since all other octahedra and Cs
atoms have the same displacement pattern.
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the excitonic polaron [Figs. 1(c) and 1(d)] are more diffuse
than those of the electron polaron and of the hole polaron
[Figs. 1(a) and 1(b)].
The difference between the formation energy and locali-

zation of the polaron and of the excitonic polaron can be
rationalized by inspecting the exciton-phonon coupling
matrix element in Eq. (9). In this expression, the two terms
associated with electron-phonon and hole-phonon cou-
plings appear with opposite signs and tend to cancel out.
Physically, this partial cancellation stems from the fact that,
when small polarons with similar localization length and
opposite charge combine to produce an exciton, the net
charge density tends to cancel out, which can be seen by the
similar shape and distribution of the electron density and
hole density of the excitonic polaron [Figs. 1(c) and 1(d)],
thus weakening the lattice distortion and leading to a
smaller polaronic stabilization of the free exciton. This
observation indicates that, to observe large polaronic effects
in excitons, one needs to look for materials with large
differences in the electron-phonon and hole-phonon inter-
action strengths.
In summary, we developed a theoretical and computa-

tional method that enables, for the first time, ab initio
calculations of excitonic polarons and self-trapped excitons
in real materials. This method does not require computa-
tionally prohibitive supercell calculations and can seam-
lessly be used to investigate small and large excitonic
polarons as well as self-trapped excitons. This Letter will
make it possible to investigate the physics of exciton-
phonon couplings and self-trapped excitons in diverse

classes of materials with potential for solar energy harvest-
ing, photocatalysis, energy-efficient lighting, and light-
driven quantum matter.
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